Skip to main content

Fluid–Structure Interaction Analysis of Bioprosthetic Heart Valves: the Application of a Computationally-Efficient Tissue Constitutive Model

  • Chapter
  • First Online:
Advances in Heart Valve Biomechanics

Abstract

This paper builds on a recently developed computationally tractable material model merged with an immersogeometric fluid–structure interaction methodology for bioprosthetic heart valve modeling and simulation. Our main objective is to enable improved application of the use of exogenous crosslinked tissues in prosthesis design through computational methods by utilizing physically realistic constitutive models. To enhance constitutive modeling, valve leaflets are modeled with a computationally efficient phenomenological constitutive relation stemmed from a full structural model to explore the influence of incorporating a high-fidelity material model for the leaflets. We call this phenomenological version as the effective model. This effective model constitutive form is incorporated in the context of the isogeometric analysis to develop an efficient fluid–structure interaction method for thin shell structure of the leaflet tissues. The implementation is supported by representative simulations showing the applicability and usefulness of our effective material model in heart valve simulation framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng. 2007;197:173–201.

    Article  Google Scholar 

  2. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y. Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech. 2008;43:3–37.

    Article  Google Scholar 

  3. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J. Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol. 2010;9:481–98.

    Article  CAS  Google Scholar 

  4. Donea J, Giuliani S, Halleux JP. An arbitrary Lagrangian-Eulerian finite element method for transient dynamics fluid–structure interactions. Comput Methods Appl Mech Eng. 1982;33:689–723.

    Article  Google Scholar 

  5. Fung Y-C. Biomechanics. New York: Springer; 1993.

    Book  Google Scholar 

  6. Gilmanov A, Stolarski H, Sotiropoulos F. Non-linear rotation-free shell finite-element models for aortic heart valves. J Biomech. 2017;50:56–62.

    Article  Google Scholar 

  7. Holzapfel GA, Gasser TC. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast. 2000;61:1–48.

    Article  Google Scholar 

  8. Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR. Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech. 2014;54:1055–71.

    Article  Google Scholar 

  9. Hsu M-C, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks MS. Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech. 2015;55:1211–25.

    Article  Google Scholar 

  10. Kamensky D, Evans JA, Hsu M-C. Stability and conservation properties of collocated constraints in immersogeometric fluid-thin structure interaction analysis. Commun Comput Phys. 2015;18:1147–80.

    Article  Google Scholar 

  11. Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR. An immersogeometric variational framework for fluid–structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng. 2015;284:1005–53.

    Article  Google Scholar 

  12. Kiendl J. Isogeometric analysis and shape optimal design of shell structures. PhD thesis, Lehrstuhl für Statik, Technische Universität München; 2011.

    Google Scholar 

  13. Kiendl J, Bletzinger K-U, Linhard J, Wüchner R. Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng. 2009;198:3902–14.

    Article  Google Scholar 

  14. Kiendl J, Bazilevs Y, Hsu MC, Wüchner R, Bletzinger K-U. The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng. 2010;199:2403–16.

    Article  Google Scholar 

  15. Kiendl J, Hsu M-C, Wu MCH, Reali A. Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Comput Methods Appl Mech Eng. 2015;291:280–303.

    Article  Google Scholar 

  16. Kim H, Lu J, Sacks MS, Chandran KB. Dynamic simulation pericardial bioprosthetic heart valve function. J Biomech Eng. 2006;128(5):717–24.

    Article  Google Scholar 

  17. May-Newman K, Yin FCP. A constitutive law for mitral valve tissue. J Biomech Eng. 1998;120(1):38.

    Article  CAS  Google Scholar 

  18. Mirnajafi A, Raymer J, Scott MJ, Sacks MS. The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials. Biomaterials 2005;26(7):795–804.

    Article  CAS  Google Scholar 

  19. Rivlin RS, Saunders DW. Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber. Philos Trans R Soc A Math Phys Eng Sci. 1951;243(865):251–88.

    Article  Google Scholar 

  20. Sacks MS, Sun W. Multiaxial mechanical behavior of biological materials. Annu Rev Biomed Eng. 2003;5(1):251–84.

    Article  CAS  Google Scholar 

  21. Sacks MS, Zhang W, Wognum S. A novel fibre-ensemble level constitutive model for exogenous cross-linked collagenous tissues. Interface Focus. 2015;6(1):20150090.

    Article  Google Scholar 

  22. Scott MA, Borden MJ, Verhoosel CV, Sederberg TW, Hughes TJR. Isogeometric finite element data structures based on Bézier extraction of T-splines. Int J Numer Methods Eng. 2011;88:126–56.

    Article  Google Scholar 

  23. Sun W, Sacks MS. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech Model Mechanobiol. 2005;4:190–9.

    Article  Google Scholar 

  24. Tezduyar TE, Sathe S, Stein K. Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng. 2006;195:5743–53.

    Article  Google Scholar 

  25. Vesely I, Boughner D. Analysis of the bending behaviour of porcine xenograft leaflets and of natural aortic valve material: bending stiffness, neutral axis and shear measurements. J Biomech. 1989;22(6–7):655–71.

    Article  CAS  Google Scholar 

  26. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng. 2006;195:3776–96.

    Article  Google Scholar 

  27. Wu MCH, Zakerzadeh R, Kamensky D, Kiendl J, Sacks MS, Hsu M-C. An anisotropic constitutive model for immersogeometric fluidstructure interaction analysis of bioprosthetic heart valves. J Biomech. 2018;74:23–31.

    Article  Google Scholar 

  28. Xu F, Morganti S, Zakerzadeh R, Kamensky D, Auricchio F, Reali A, Hughes TJR, Sacks MS, Hsu M-C. A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid–structure interaction analysis. Int J Numer Methods Biomed Eng. 2018;34(4):e2938. https://doi.org/10.1002/cnm.2938.

    Article  Google Scholar 

  29. Zakerzadeh R, Hsu M-C, Sacks MS. Computational methods for the aortic heart valve and its replacements. Expert Rev Med Devices. 2017;14(11):849–66.

    Article  CAS  Google Scholar 

  30. Zhang W, Sacks MS. Modeling the response of exogenously crosslinked tissue to cyclic loading: the effects of permanent set. J Mech Behav Biomed Mater. 2017;75:336–50.

    Article  CAS  Google Scholar 

  31. Zhang W, Zakerzadeh R, Zhang W, Sacks MS. A computationally efficient material model for the effective response of planar soft tissues. J Mech Behav Biomed Mater.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under award number R01HL129077. The author Rana Zakerzadeh is partially supported by ICES Postdoctoral Fellowship. We thank the Texas Advanced Computing Center (TACC) at the University of Texas at Austin for providing HPC resources that have contributed to the research results reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sacks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zakerzadeh, R., Wu, M.C.H., Zhang, W., Hsu, MC., Sacks, M.S. (2018). Fluid–Structure Interaction Analysis of Bioprosthetic Heart Valves: the Application of a Computationally-Efficient Tissue Constitutive Model. In: Sacks, M., Liao, J. (eds) Advances in Heart Valve Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-030-01993-8_17

Download citation

Publish with us

Policies and ethics