Skip to main content

Decellularization in Heart Valve Tissue Engineering

  • Chapter
  • First Online:

Abstract

Annually, over 50,000 deaths are attributed to heart valve disease (HVD) in the United States. The most common treatment for HVD, such as stenosis and regurgitation, is total valve replacement using mechanical and bioprosthetic heart valves, which often results in subsequent surgery to replace failed implants. For the pediatric population especially, a viable valve implant with the potential to repair, remodel, and grow within the patient is a great clinical need. Recent research has demonstrated that tissue-engineered heart valves (TEHV) have the potential to deliver a viable valve replacement, which is constructed with scaffolds and functional cells. Acellular heart valve (HV) scaffolds obtained by decellularization, biological polymer scaffolds, and synthetic polymer scaffolds have been widely used for TEHV fabrication, each having advantages and disadvantages. In this chapter, we focus on TEHV via a decellularization approach and provide a systematic review covering (1) the concepts of decellularization and current decellularization methods, (2) a comparative study showing how the ultrastructure and biomechanics of acellular HV scaffolds were affected by different decellularization methods, (3) the cell sources and bioreactor systems for TEHV reseeding, conditioning, and integrity testing, and (4) the current accomplishments of HV decellularization in animal studies and clinical trials and the challenges in moving this approach toward clinical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mozaffarian D, et al. Executive summary: heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133(4):447–54.

    Article  PubMed  Google Scholar 

  2. Davlouros PA, et al. Transcatheter aortic valve replacement and stroke: a comprehensive review. J Geriatr Cardiol. 2018;15(1):95.

    PubMed  PubMed Central  Google Scholar 

  3. Stewart BF, et al. Clinical factors associated with calcific aortic valve disease. J Am Coll Cardiol. 1997;29(3):630–4.

    Article  CAS  PubMed  Google Scholar 

  4. Mozaffarian D, et al. Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–60.

    PubMed  Google Scholar 

  5. Hammermeister K, et al. Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial. J Am Coll Cardiol. 2000;36(4):1152–8.

    Article  CAS  PubMed  Google Scholar 

  6. Tillquist MN, Maddox TM. Cardiac crossroads: deciding between mechanical or bioprosthetic heart valve replacement. Patient Prefer Adherence. 2011;5:91–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Frater R, et al. Long-term durability and patient functional status of the Carpentier-Edwards Perimount pericardial bioprosthesis in the aortic position. J Heart Valve Dis. 1998;7(1):48–53.

    CAS  PubMed  Google Scholar 

  8. Marchand MA, et al. Fifteen-year experience with the mitral Carpentier-Edwards PERIMOUNT pericardial bioprosthesis. Ann Thorac Surg. 2001;71(5):S236–9.

    Article  CAS  PubMed  Google Scholar 

  9. Bloomfield P, et al. Twelve-year comparison of a Bjork-Shiley mechanical heart valve with porcine bioprostheses. N Engl J Med. 1991;324(9):573–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kaneko T, Cohn LH, Aranki SF. Tissue valve is the preferred option for patients aged 60 and older. Circulation. 2013;128(12):1365–71.

    Article  PubMed  Google Scholar 

  11. Vesely I. Heart valve tissue engineering. Circ Res. 2005;97(8):743–55.

    Article  CAS  PubMed  Google Scholar 

  12. Delgado V, et al. Successful deployment of a transcatheter aortic valve in bicuspid aortic stenosis. Circ Cardiovasc Imaging. 2009;2(2):e12–3.

    Article  PubMed  Google Scholar 

  13. Henaine R, et al. Valve replacement in children: a challenge for a whole life. Arch Cardiovasc Dis. 2012;105(10):517–28.

    Article  PubMed  Google Scholar 

  14. Schoen FJ, Levy RJ. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg. 2005;79(3):1072–80.

    Article  PubMed  Google Scholar 

  15. Manji RA, et al. Glutaraldehyde-fixed bioprosthetic heart valve conduits calcify and fail from xenograft rejection. Circulation. 2006;114(4):318–27.

    Article  CAS  PubMed  Google Scholar 

  16. Ross DN. Replacement of aortic and mitral valves with a pulmonary autograft. Lancet. 1967;2(7523):956–8.

    Article  CAS  PubMed  Google Scholar 

  17. Charitos EI, et al. Reoperations on the pulmonary autograft and pulmonary homograft after the Ross procedure: an update on the German Dutch Ross Registry. J Thorac Cardiovasc Surg. 2012;144(4):813–23.

    Article  PubMed  Google Scholar 

  18. Lam MT, Wu JC. Biomaterial applications in cardiovascular tissue repair and regeneration. Expert Rev Cardiovasc Ther. 2012;10(8):1039–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Simionescu D, et al. Form follows function: advances in trilayered structure replication for aortic heart valve tissue engineering. J Healthcare Eng. 2012;3(2):179–202.

    Article  Google Scholar 

  20. Engelmayr GC, et al. The independent role of cyclic flexure in the early in vitro development of an engineered heart valve tissue. Biomaterials. 2005;26(2):175–87.

    Article  CAS  PubMed  Google Scholar 

  21. Hoerstrup SP, et al. New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Eng. 2000;6(1):75–9.

    Article  CAS  PubMed  Google Scholar 

  22. Ramamurthi A, Vesely I. Evaluation of the matrix-synthesis potential of crosslinked hyaluronan gels for tissue engineering of aortic heart valves. Biomaterials. 2005;26(9):999–1010.

    Article  CAS  PubMed  Google Scholar 

  23. Meyer U, et al. Fundamentals of tissue engineering and regenerative medicine. Berlin: Springer; 2009.

    Book  Google Scholar 

  24. Bouten CV, et al. Substrates for cardiovascular tissue engineering. Adv Drug Deliv Rev. 2011;63(4–5):221–41.

    Article  CAS  PubMed  Google Scholar 

  25. Rippel RA, Ghanbari H, Seifalian AM. Tissue-engineered heart valve: future of cardiac surgery. World J Surg. 2012;36(7):1581–91.

    Article  PubMed  Google Scholar 

  26. Baraki H, et al. Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials. 2009;30(31):6240–6.

    Article  CAS  PubMed  Google Scholar 

  27. Sacks MS, Schoen FJ, Mayer JE Jr. Bioengineering challenges for heart valve tissue engineering. Annu Rev Biomed Eng. 2009;11:289–313.

    Article  CAS  PubMed  Google Scholar 

  28. Vesely I, Noseworthy R. Micromechanics of the fibrosa and the ventricularis in aortic valve leaflets. J Biomech. 1992;25(1):101–13.

    Article  CAS  PubMed  Google Scholar 

  29. Brazile B, et al. On the bending properties of porcine mitral, tricuspid, aortic, and pulmonary valve leaflets. J Long-Term Eff Med Implants. 2015;25(1–2):41–53.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tomasek JJ, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3(5):349–63.

    Article  CAS  PubMed  Google Scholar 

  31. Stella JA, Sacks MS. The digital leaflet: quantitative image analysis and 3-D digital reconstruction of the aortic valve leaflet. In: ASME 2007 summer bioengineering conference. American Society of Mechanical Engineers; 2007.

    Google Scholar 

  32. Adham M, et al. Mechanical characteristics of fresh and frozen human descending thoracic aorta. J Surg Res. 1996;64(1):32–4.

    Article  CAS  PubMed  Google Scholar 

  33. Isenberg BC, Williams C, Tranquillo RT. Small-diameter artificial arteries engineered in vitro. Circ Res. 2006;98(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  34. Filip DA, Radu A, Simionescu M. Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells. Circ Res. 1986;59(3):310–20.

    Article  CAS  PubMed  Google Scholar 

  35. Liu AC, Joag VR, Gotlieb AI. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am J Pathol. 2007;171(5):1407–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Merryman WD, et al. Viscoelastic properties of the aortic valve interstitial cell. J Biomech Eng. 2009;131(4):041005.

    Article  PubMed  Google Scholar 

  37. Serini G, Gabbiani G. Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res. 1999;250(2):273–83.

    Article  CAS  PubMed  Google Scholar 

  38. Butcher JT, Nerem RM. Valvular endothelial cells regulate the phenotype of interstitial cells in co-culture: effects of steady shear stress. Tissue Eng. 2006;12(4):905–15.

    Article  CAS  PubMed  Google Scholar 

  39. Aikawa E, et al. Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering. Circulation. 2006;113(10):1344–52.

    Article  PubMed  Google Scholar 

  40. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675–83.

    CAS  PubMed  Google Scholar 

  41. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Neumann A, et al. Early systemic cellular immune response in children and young adults receiving decellularized fresh allografts for pulmonary valve replacement. Tissue Eng Part A. 2014;20(5–6):1003–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lichtenberg A, et al. Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions. Circulation. 2006;114(1 Suppl):I559–65.

    PubMed  Google Scholar 

  44. Dohmen PM, et al. Ross operation with a tissue-engineered heart valve. Ann Thorac Surg. 2002;74(5):1438–42.

    Article  PubMed  Google Scholar 

  45. Liao J, Joyce EM, Sacks MS. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials. 2008;29(8):1065–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou J, et al. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials. 2010;31(9):2549–54.

    Article  CAS  PubMed  Google Scholar 

  47. Dainese L, et al. Heart valve engineering: decellularized aortic homograft seeded with human cardiac stromal cells. J Heart Valve Dis. 2012;21(1):125–34.

    PubMed  Google Scholar 

  48. Cigliano A, et al. Fine structure of glycosaminoglycans from fresh and decellularized porcine cardiac valves and pericardium. Biochem Res Int. 2012;2012:979351.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Rieder E, et al. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg. 2004;127(2):399–405.

    Article  PubMed  Google Scholar 

  50. Lehr EJ, et al. Decellularization reduces immunogenicity of sheep pulmonary artery vascular patches. J Thorac Cardiovasc Surg. 2011;141(4):1056–62.

    Article  PubMed  Google Scholar 

  51. Dong X, et al. RGD-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering. J Mater Sci Mater Med. 2009;20(11):2327–36.

    Article  CAS  PubMed  Google Scholar 

  52. Prasertsung I, et al. Development of acellular dermis from porcine skin using periodic pressurized technique. J Biomed Mater Res B Appl Biomater. 2008;85(1):210–9.

    Article  PubMed  CAS  Google Scholar 

  53. Reing JE, et al. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials. 2010;31(33):8626–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gorschewsky O, et al. Quantitative analysis of biochemical characteristics of bone-patellar tendon-bone allografts. Biomed Mater Eng. 2005;15(6):403–11.

    CAS  PubMed  Google Scholar 

  55. Cox B, Emili A. Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics. Nat Protoc. 2006;1(4):1872–8.

    Article  CAS  PubMed  Google Scholar 

  56. Xu CC, Chan RW, Tirunagari N. A biodegradable, acellular xenogeneic scaffold for regeneration of the vocal fold lamina propria. Tissue Eng. 2007;13(3):551–66.

    Article  CAS  PubMed  Google Scholar 

  57. Petersen TH, et al. Tissue-engineered lungs for in vivo implantation. Science. 2010;329(5991):538–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hudson TW, Liu SY, Schmidt CE. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng. 2004;10(9–10):1346–58.

    Article  CAS  PubMed  Google Scholar 

  59. Cebotari S, et al. Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells. Artif Organs. 2010;34(3):206–10.

    Article  PubMed  Google Scholar 

  60. Meyer SR, et al. Comparison of aortic valve allograft decellularization techniques in the rat. J Biomed Mater Res A. 2006;79(2):254–62.

    Article  PubMed  CAS  Google Scholar 

  61. Lumpkins SB, Pierre N, McFetridge PS. A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc. Acta Biomater. 2008;4(4):808–16.

    Article  PubMed  Google Scholar 

  62. Grauss RW, et al. Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur J Cardiothorac Surg. 2005;27(4):566–71.

    Article  PubMed  Google Scholar 

  63. Fung Y-C. Biomechanics: mechanical properties of living tissues. New York: Springer Science & Business Media; 2013.

    Google Scholar 

  64. Liao J, et al. The intrinsic fatigue mechanism of the porcine aortic valve extracellular matrix. Cardiovasc Eng Technol. 2012;3(1):62–72.

    Article  Google Scholar 

  65. Dohmen PM, et al. Mid-term clinical results using a tissue-engineered pulmonary valve to reconstruct the right ventricular outflow tract during the Ross procedure. Ann Thorac Surg. 2007;84(3):729–36.

    Article  PubMed  Google Scholar 

  66. Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  67. Hoerstrup SP, et al. Functional living trileaflet heart valves grown in vitro. Circulation. 2000;102(19 Suppl 3):III44–9.

    CAS  PubMed  Google Scholar 

  68. Latif N, et al. Characterization of structural and signaling molecules by human valve interstitial cells and comparison to human mesenchymal stem cells. J Heart Valve Dis. 2007;16(1):56–66.

    PubMed  Google Scholar 

  69. Rotmans JI, et al. In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation. 2005;112(1):12–8.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang S, et al. Ovarian cancer stem cells express ROR1, which can be targeted for anti-cancer-stem-cell therapy. Proc Natl Acad Sci U S A. 2014;111(48):17266–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sodian R, et al. Use of human umbilical cord blood-derived progenitor cells for tissue-engineered heart valves. Ann Thorac Surg. 2010;89(3):819–28.

    Article  PubMed  Google Scholar 

  72. Schmidt D, et al. Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Ann Thorac Surg. 2004;78(6):2094–8.

    Article  PubMed  Google Scholar 

  73. Schmidt D, et al. Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells. Eur J Cardiothorac Surg. 2005;27(5):795–800.

    Article  PubMed  Google Scholar 

  74. Schmidt D, et al. Engineering of biologically active living heart valve leaflets using human umbilical cord-derived progenitor cells. Tissue Eng. 2006;12(11):3223–32.

    Article  CAS  PubMed  Google Scholar 

  75. Schmidt D, et al. Living autologous heart valves engineered from human prenatally harvested progenitors. Circulation. 2006;114(1 Suppl):I125–31.

    PubMed  Google Scholar 

  76. Corselli M, et al. Clinical scale ex vivo expansion of cord blood-derived outgrowth endothelial progenitor cells is associated with high incidence of karyotype aberrations. Exp Hematol. 2008;36(3):340–9.

    Article  CAS  PubMed  Google Scholar 

  77. De Coppi P, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100–6.

    Article  PubMed  CAS  Google Scholar 

  78. Schmidt D, et al. Cryopreserved amniotic fluid-derived cells: a lifelong autologous fetal stem cell source for heart valve tissue engineering. J Heart Valve Dis. 2008;17(4):446–55; discussion 455.

    PubMed  Google Scholar 

  79. Prusa A-R, Hengstschlager M. Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monit. 2002;8(11):RA253–7.

    PubMed  Google Scholar 

  80. Tsai MS, et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod. 2004;19(6):1450–6.

    Article  PubMed  Google Scholar 

  81. Siepe M, et al. Stem cells used for cardiovascular tissue engineering. Eur J Cardiothorac Surg. 2008;34(2):242–7.

    Article  PubMed  Google Scholar 

  82. Vander Roest MJ, Merryman WD. A developmental approach to induced pluripotent stem cells-based tissue engineered heart valves. Future Medicine. 2017;13:1–4.

    CAS  Google Scholar 

  83. Martin I, Wendt D, Heberer M. The role of bioreactors in tissue engineering. Trends Biotechnol. 2004;22(2):80–6.

    Article  CAS  PubMed  Google Scholar 

  84. Bancroft GN, Sikavitsas VI, Mikos AG. Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue Eng. 2003;9(3):549–54.

    Article  CAS  PubMed  Google Scholar 

  85. Pörtner R, et al. Bioreactor design for tissue engineering. J Biosci Bioeng. 2005;100(3):235–45.

    Article  PubMed  CAS  Google Scholar 

  86. Sierad LN, et al. Design and testing of a pulsatile conditioning system for dynamic endothelialization of polyphenol-stabilized tissue engineered heart valves. Cardiovasc Eng Technol. 2010;1(2):138–53.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mol A, et al. The relevance of large strains in functional tissue engineering of heart valves. Thorac Cardiovasc Surg. 2003;51(2):78–83.

    Article  CAS  PubMed  Google Scholar 

  88. Engelmayr GC Jr, et al. A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials. 2003;24(14):2523–32.

    Article  CAS  PubMed  Google Scholar 

  89. Engelmayr GC Jr, et al. A novel flex-stretch-flow bioreactor for the study of engineered heart valve tissue mechanobiology. Ann Biomed Eng. 2008;36(5):700–12.

    PubMed  PubMed Central  Google Scholar 

  90. Weston MW, Yoganathan AP. Biosynthetic activity in heart valve leaflets in response to in vitro flow environments. Ann Biomed Eng. 2001;29(9):752–63.

    Article  CAS  PubMed  Google Scholar 

  91. Zeltinger J, et al. Development and characterization of tissue-engineered aortic valves. Tissue Eng. 2001;7(1):9–22.

    Article  CAS  PubMed  Google Scholar 

  92. Mol A, et al. Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach. Ann Biomed Eng. 2005;33(12):1778–88.

    Article  PubMed  Google Scholar 

  93. Cebotari S, et al. Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation. 2006;114(1 Suppl):I132–7.

    PubMed  Google Scholar 

  94. Schmidt D, et al. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J Am Coll Cardiol. 2010;56(6):510–20.

    Article  PubMed  Google Scholar 

  95. Syedain ZH, et al. Implantation of a tissue-engineered heart valve from human fibroblasts exhibiting short term function in the sheep pulmonary artery. Cardiovasc Eng Technol. 2011;2(2):101–12.

    Article  Google Scholar 

  96. Dohmen PM, et al. Ten years of clinical results with a tissue-engineered pulmonary valve. Ann Thorac Surg. 2011;92(4):1308–14.

    Article  PubMed  Google Scholar 

  97. da Costa FD, et al. The early and midterm function of decellularized aortic valve allografts. Ann Thorac Surg. 2010;90(6):1854–60.

    Article  PubMed  Google Scholar 

  98. Simon P, et al. Early failure of the tissue engineered porcine heart valve SYNERGRAFT® in pediatric patients. Eur J Cardiothorac Surg. 2003;23(6):1002–6.

    Article  CAS  PubMed  Google Scholar 

  99. Bayrak A, et al. Human immune responses to porcine xenogeneic matrices and their extracellular matrix constituents in vitro. Biomaterials. 2010;31(14):3793–803.

    Article  CAS  PubMed  Google Scholar 

  100. Leyh RG, et al. In vivo repopulation of xenogeneic and allogeneic acellular valve matrix conduits in the pulmonary circulation. Ann Thorac Surg. 2003;75(5):1457–63.

    Article  PubMed  Google Scholar 

  101. Dohmen PM, Konertz W. Results with decellularized xenografts. Circ Res. 2006;99(4):e10.

    Article  CAS  PubMed  Google Scholar 

  102. Mol A, et al. Tissue engineering of heart valves: advances and current challenges. Expert Rev Med Devices. 2009;6(3):259–75.

    Article  CAS  PubMed  Google Scholar 

  103. Schoen FJ, Levy RJ. Tissue heart valves: current challenges and future research perspectives. J Biomed Mater Res A. 1999;47(4):439–65.

    Article  CAS  Google Scholar 

  104. Mendelson K, Schoen FJ. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng. 2006;34(12):1799–819.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med. 2011;17(8):424–32.

    Article  CAS  PubMed  Google Scholar 

  106. Haupt J, et al. Detergent-based decellularization strategy preserves macro- and microstructure of heart valves. Interact Cardiovasc Thorac Surg. 2018;26(2):230–6.

    Article  PubMed  Google Scholar 

  107. Lu X, et al. Crosslinking effect of nordihydroguaiaretic acid (NDGA) on decellularized heart valve scaffold for tissue engineering. J Mater Sci Mater Med. 2010;21(2):473–80.

    Article  CAS  PubMed  Google Scholar 

  108. Tedder ME, et al. Stabilized collagen scaffolds for heart valve tissue engineering. Tissue Eng Part A. 2009;15(6):1257–68.

    Article  CAS  PubMed  Google Scholar 

  109. Deborde C, et al. Stabilized collagen and elastin-based scaffolds for mitral valve tissue engineering. Tissue Eng A. 2016;22(21–22):1241–51.

    Article  CAS  Google Scholar 

  110. Stamm C, et al. Biomatrix/polymer composite material for heart valve tissue engineering. Ann Thorac Surg. 2004;78(6):2084–92; discussion 2092–3.

    Article  PubMed  Google Scholar 

  111. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  112. Ouyang H, et al. [Research on application of modified polyethylene glycol hydrogels in the construction of tissue engineered heart valve]. Zhonghua wai ke za zhi [Chin J Surg]. 2008;46(22):1723–6.

    Google Scholar 

  113. Schoen FJ. Heart valve tissue engineering: quo vadis? Curr Opin Biotechnol. 2011;22(5):698–705.

    Article  CAS  PubMed  Google Scholar 

  114. Hjortnaes J, et al. Translating autologous heart valve tissue engineering from bench to bed. Tissue Eng Part B Rev. 2009;15(3):307–17.

    Article  CAS  PubMed  Google Scholar 

  115. Bouten CV, Driessen-Mol A, Baaijens FP. In situ heart valve tissue engineering: simple devices, smart materials, complex knowledge. Expert Rev Med Devices. 2012;9(5):453–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by AHA BGIA-0565346U, GRNT17150041, NIH 1R01EB022018-01, 1R56HL130950-01, 1R15HL140503, T32HL134613, and NSF CAREER #1554835. The authors also thank the support from the Competitiveness Operational Programme 2014–2020, ID P_37_673, MySMIS code: 103431, contract 50/05.09.2016 and the Harriet and Jerry Dempsey Bioengineering Professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Copeland, K.M. et al. (2018). Decellularization in Heart Valve Tissue Engineering. In: Sacks, M., Liao, J. (eds) Advances in Heart Valve Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-030-01993-8_12

Download citation

Publish with us

Policies and ethics