Skip to main content

Self-Similar Groups

  • Chapter
  • First Online:

Part of the book series: Compact Textbooks in Mathematics ((CTM))

Abstract

Self-similar groups, or automata groups, consist of certain automorphisms of the infinite complete rooted binary tree. We describe them using several different concepts: computers are designed, portraits are drawn, and self-similar rules are written. Some well-known self-similar groups such as Grigorchuk’s group, the Adding Machine, and the Tower of Hanoi are explored.

I try in my prints to testify that we live in a beautiful and orderly world, not in a chaos without norms, even though that is how it sometimes appears.

M. C. Escher

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. 127 rect: Cantor set, a fractal, presented in seven iterations, Wikimedia Commons, January 18 2007. https://commons.wikimedia.org/wiki/File:Cantor_set_in_seven_iterations.svg

  2. ArEb: The Mandelbrot Set is a mathematical fractal defined by the recursive formula z = z 2 + c, where z and c are complex numbers. This image was calculated for 100,000 iterations using the freeware program Fractal Explorer 2.02. Window boundaries: − 2 < Re(c) < 0.5 and − 0.9375 < Im(c) < 0.9375, Wikimedia Commons, April 23, 2007. https://commons.wikimedia.org/wiki/File:Blue-Gold_Mandelbrot_Set.jpg

  3. Bartholdi, L.: FR GAP package: computations with functionally recursive groups, Version 2.4.1 (2017). http://www.gap-system.org/Packages/fr.html

  4. Bartholdi, L., Virág, B.: Amenability via random walks. Duke Math. J. 130(1), 39–56 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bondarenko, I., Grigorchuk, R., Kravchenko, R., Muntyan, Y., Nekrashevych, V., Savchuk, Z., Šunić, Z.: Classification of groups generated by 3-state automata over a 2-letter alphabet (2008). http://arxiv.org/abs/0803.3555v1

  6. Brooks, L.: Curly fern leaf. Wikimedia Commons (2013). https://commons.wikimedia.org

  7. Brunner, A.M., Sidki, S.: The generation of GL(n, Z) by finite state automata. Int. J. Alg. Comput. 8(1), 127–139 (1998)

    Article  MathSciNet  Google Scholar 

  8. Caponi, L.: On the Classification of groups generated by automata with 4 states over a 2-letter alphabet, University of South Florida, M. A. thesis, advisor: D. Savchuk (2014)

    Google Scholar 

  9. Day, M.M.: Amenable semigroups. Ill. J. Math. 1, 509–544 (1957)

    MathSciNet  MATH  Google Scholar 

  10. Elder, M.: A short introduction to self-similar groups. Asia Pac. Math. Newsl. 3(1), (2013). http://www.asiapacific-mathnews.com/03/0301/0017_0021.pdf

  11. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word Processing in Groups. Published by Jones, Bartlett. CRC Press, Boca Raton (1992)

    Google Scholar 

  12. Escher, M.C.: Sketch of Alhambra Tiles (1934). https://www.pinterest.com/pin/418271884112983852/?lp=true

  13. Escher, M.C.: Smaller and smaller, woodcut (1956). https://www.pinterest.co.uk/pin/329044316505529408/?lp=true

  14. Fijakowski, A.J.: Fractal generated using a finite transformation. Wikimedia Commons (2005). https://commons.wikimedia.org

  15. Grigorchuk, R. I.: On Burnside’s problem on periodic groups. Funct. Anal. Appl. 14(1), 41–43 (1980)

    Article  MathSciNet  Google Scholar 

  16. Grigorchuk, R.I.: Degrees of growth of finitely generated groups and the theory of invariant means. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 48(5), 939–985 (1984)

    MathSciNet  Google Scholar 

  17. Grigorchuk, R.I.: An example of a finitely presented amenable group that does not belong to the class. EG. Mat. Sb. 189(1), 79–100 (1998)

    Article  MathSciNet  Google Scholar 

  18. Grigorchuk, R.I.: Just infinite branch groups. In: New Horizons in Pro-p Groups, 121179. Progress in Mathematics, vol. 184. Birkhauser, Boston (2000)

    Chapter  Google Scholar 

  19. Grigorchuk, R.I., Šunić, Z.: Self-similarity and branching in group theory. London Math. Soc. Lecture Note Ser. 339, 36–95 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Gupta, N., Sidki, S.: On the Burnside problem for periodic groups. Math. Z. 182, 385 (1983). 388. MR85g:20075

    Article  MathSciNet  Google Scholar 

  21. Kaimanovich, V.: “Münchhausen trick” and amenability of self-similar groups. Int. J. Algebra Comput. 15(5–6), 907–937 (2005)

    Article  Google Scholar 

  22. Lysenok, I.G.: A system of defining relations for a Grigorchuk group. Math. Notes 38(4), 784–792 (1985)

    Article  MathSciNet  Google Scholar 

  23. Mohri, M.: Minimization algorithms for sequential transducers. Theor. Comput. Sci. 234, 177–201 (2000)

    Article  MathSciNet  Google Scholar 

  24. Muntyan, Y., Savchuk, D.: AutomGrp GAP package for: computations in self-similar groups and semigroups. Version 1.3 (2016). http://www.gap-system.org/Packages/automgrp.html

  25. Nekrashevych, V.: Self-Similar Groups, pp. 9–23. American Mathematical Society, Providence (2005)

    Google Scholar 

  26. Spitznagel, E.L.: Selected Topics in Mathematics, p. 137. Holt, Rinehart and Winston, New York (1971). ISBN 0-03-084693-5

    Google Scholar 

  27. The GAP Group: GAP Groups, Algorithms, and Programming, Version 4.8.7 (2017). http://www.gap-system.org

  28. Wikimedia Commons: Nautilus cutaway logarithmic spiral, https://commons.wikimedia.org/wiki/File:NautilusCutawayLogarithmicSpiral.jpg

  29. xlibber: A close-up of some arabic tiles in Cartagena in Spain. Wikimedia Commons (2010). https://commons.wikimedia.org

  30. Żuk, A.: Automata groups, Institut de Mathematiques Universite Paris 7. http://cms.dm.uba.ar/Members/gcorti/workgroup.GNC/notes.pdf

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bonanome, M.C., Dean, M.H., Putnam Dean, J. (2018). Self-Similar Groups. In: A Sampling of Remarkable Groups. Compact Textbooks in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-01978-5_3

Download citation

Publish with us

Policies and ethics