Skip to main content

Computation of Optimal Trajectories for Delay Systems: An Optimize-Then-Discretize Strategy for General-Purpose NLP Solvers

  • Chapter
  • First Online:
Book cover Numerical Methods for Optimal Control Problems

Part of the book series: Springer INdAM Series ((SINDAMS,volume 29))

  • 1090 Accesses

Abstract

We propose an “optimize-then-discretize” approach for the numerical solution of optimal control problems for systems with delays in both state and control. We first derive the optimality conditions and an explicit representation of the gradient of the cost functional. Then, we use explicit discretizations of the state/costate equations and employ general-purpose Non-Linear Programming (NLP) solvers, in particular Conjugate Gradient or Quasi-Newton schemes, to easily implement a descent method. Finally, we prove convergence of the algorithm to stationary points of the cost, and present some numerical simulations on model problems, including performance evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angell, T.S., Kirsch, A.: On the necessary conditions for optimal control of retarded systems. Appl. Math. Optim. 22, 117–145 (1990)

    Article  MathSciNet  Google Scholar 

  2. Banks, H.T.: Necessary conditions for control problems with variable time lags. SIAM J. Control 6, 9–47 (1968)

    Article  MathSciNet  Google Scholar 

  3. Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  4. Betts, J.T., Campbell, S.L., Thompson, K.C.: Solving optimal control problems with control delays using direct transcription. Appl. Numer. Math. 108, 185–203 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bonalli, R., Hérissé, B., Trélat, E.: Solving nonlinear optimal control problems with state and control delays by shooting methods combined with numerical continuation on the delays (2017). arXiv:1709:04383

    Google Scholar 

  6. Bryson, A.E., Denham, W.F.: Optimum programming problems with inequality constraints. II. Solutions by Steepest Descent. Am. Inst. Aeronaut. Astronaut. J. 2, 25–34 (1964)

    Article  Google Scholar 

  7. Bryson, A.E., Denham, W.F., Dreyfus, S.E.: Optimal programming problems with inequality constraints. I. Necessary Conditions for Extremal Solutions. Am. Inst. Aeronaut. Astronaut. J. 1, 2544–2550 (1963)

    Article  Google Scholar 

  8. Burger, M.: Optimal Control of Dynamical Systems: Calculating Input Data for Multibody System Simulation. Verlag Dr. Hut, München (2011)

    Google Scholar 

  9. Gerdts, M.: Optimal Control of ODEs and DAEs. De Gruyter, Berlin (2012)

    Book  Google Scholar 

  10. Göllmann, L., Maurer, H.: Theory and applications of optimal control problems with multiple time-delays. J. Ind. Manage. Optim. 10, 413–441 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Göllmann, L., Kern, D., Maurer, H.: Optimal control problems with delays in state and control variables subject to mixed control-state constraints. Optimal Control Appl. Methods 30, 341–365 (2009)

    Article  MathSciNet  Google Scholar 

  12. Guinn, T.: Reduction of delayed optimal control problems to nondelayed problems. J. Optim. Theory Appl. 18, 371–377 (1976)

    Article  MathSciNet  Google Scholar 

  13. Halanay, A.: Optimal controls for systems with time lag. SIAM J. Control 6, 215–234 (1968)

    Article  MathSciNet  Google Scholar 

  14. Kelley, H.J.: Gradient theory of optimal flight paths. Am. Rocket Soc. J. 30, 947–954 (1960)

    MATH  Google Scholar 

  15. Kelley, H.J.: Guidance theory and extremal fields. IRE Trans. Autom. Control 7, 75–82 (1962)

    Article  Google Scholar 

  16. Kharatishvili, G.L.: A maximum principle in extremal problems with delays. Math. Theory Control 26–34 (1967)

    Google Scholar 

  17. Tseng, M.-L., Chen, M.-S.: Chattering reduction of sliding mode control by low-pass filtering the control signal. Asian J. Control 12, 392–398 (2010)

    Article  MathSciNet  Google Scholar 

  18. Vinter, R.B.: State constrained optimal control problems with time delays. J. Math. Anal. Appl. 457, 1696–1712 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous reviewers for helpful comments which improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Cacace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cacace, S., Ferretti, R., Rafiei, Z. (2018). Computation of Optimal Trajectories for Delay Systems: An Optimize-Then-Discretize Strategy for General-Purpose NLP Solvers. In: Falcone, M., Ferretti, R., Grüne, L., McEneaney, W. (eds) Numerical Methods for Optimal Control Problems. Springer INdAM Series, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-01959-4_3

Download citation

Publish with us

Policies and ethics