Skip to main content

A Computational Framework for Muscle-Level Control of Bi-lateral Robotic Ankle Exoskeletons

  • Conference paper
  • First Online:
  • 3623 Accesses

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 22))

Abstract

Recent effort in exoskeleton control resulted in reduction of human metabolic consumption during ground-level walking. In this context, solutions that would enable biomechanical and metabolic benefits across large repertoires of motor tasks would be central in supporting the human in both medical and industrial scenarios. With this idea in mind we created a muscle-driven controller based on electromyography (EMG)-driven musculoskeletal modeling that we interfaced with the robotic bi-lateral Achilles ankle exoskeleton previously developed in our group. Preliminary results on one healthy individual show the possibility of continuously decoding EMG-dependent muscle force and resulting ankle joint moment patterns in real-time across a range of diverse motor tasks. We demonstrate that this information can be used to establish a human-exoskeleton interface with high-resolution at the level of single muscle mechanics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hidler, J., et al.: Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil. Neural Repair 23(1), 5–13 (2009)

    Article  Google Scholar 

  2. Atkeson, C.G., Zhang, J., Fiers, P., Witte, K.A., Jackson, R.W., Poggensee, K.L., Collins, S.H.: Human-in-the-loop optimization of exoskeleton assistance during walking. Sci. Robot (2017)

    Google Scholar 

  3. Durandau, G., Farina, D., Sartori, M.: Robust real-time musculoskeletal modeling driven by electromyograms. IEEE Trans. Biomed. Eng. (2017)

    Google Scholar 

  4. Meijneke, C., van Dijk, W., van der Kooij, H.: Achilles: an autonomous lightweight ankle exoskeleton to provide push-off power. In: 5th IEEE RAS/EMBS International Conference Biomedical Robotics and Biomechatronics, pp. 918–923 (2014)

    Google Scholar 

  5. Sartori, M., Reggiani, M., Farina, D., Lloyd, D.G.: EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PLoS One 7(12) (2011)

    Article  Google Scholar 

  6. Cavanagh, P.R., Komi, P.V.: Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur. J. Appl. Physiol. Occup. Physiol. 42(3), 159–163 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Sartori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Durandau, G., van der Kooij, H., Sartori, M. (2019). A Computational Framework for Muscle-Level Control of Bi-lateral Robotic Ankle Exoskeletons. In: Carrozza, M., Micera, S., Pons, J. (eds) Wearable Robotics: Challenges and Trends. WeRob 2018. Biosystems & Biorobotics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-01887-0_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01887-0_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01886-3

  • Online ISBN: 978-3-030-01887-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics