Skip to main content

Biological Events and Barriers to Effective Delivery of Cancer Therapeutics

  • Chapter
  • First Online:
Nanotheranostics for Cancer Applications

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 5))

  • 1046 Accesses

Abstract

The development and progression of human cancer are multistage processes that involve a variety of genetic mutations, epigenetic alterations, and interactions between tumor cells and their microenvironment. The genetic and epigenetic abnormalities lead to the selective growth of tumor cells that are highly resistant to apoptotic cell death and capable of avoiding immune surveillance. Those aggressive biological characteristics contribute to intrinsic and acquired resistance to cancer therapeutics. Intrinsic drug resistance refers to a poor therapeutic response of tumors to the initial chemotherapy, while acquired resistance is developed during drug treatment through additional genetic changes and dysregulation of signal pathways in tumor cells. Cross talk between cancer cells and tumor-associated stromal cells promotes infiltration and proliferation of tumor-associated fibroblasts and macrophages, accumulation of extracellular matrix (the supporting framework around the tumor cells), and dysfunctional tumor vasculatures, which create physical barriers for efficient delivery of therapeutic and diagnostic agents into tumor cells. Additional biological barriers include the overexpression of drug efflux pumps, upregulation of signal pathways associated with resistance, and the presence of cancer stem cells within the tumor. Targeting proteins that are overexpressed in the tumors such as human epidermal growth factor 2 (HER-2) aids in enhancing the overall efficiency of therapeutic delivery. While early detection of cancer cells is critical to effective treatment, clinically validated biomarkers of presymptomatic and early-stage disease are typically limited to serum or urine biomarker detection. Although conventional contrast-enhanced imaging approaches have been used for cancer detection, it has been difficult to detect small tumors due to their lack of specificity and sensitivity. Moreover, extensive stromal response in early tumors creates a delivery barrier for targeted imaging contrasts to reach tumor cells for production of specific imaging signals. In this chapter, we will focus on the key biological events in tumor development that result in heterogeneous therapeutic responses in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Cancer Report 2014. International Agency for Research on Cancer, Lyon (2014)

    Google Scholar 

  2. Dunn, G.P., Old, L.J., Schreiber, R.D.: The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004). https://doi.org/10.1146/annurev.immunol.22.012703.104803

    Article  Google Scholar 

  3. Burnet, F.M.: Immunological surveillance in neoplasia. Transplant. Rev. 7, 3–25 (1971)

    Google Scholar 

  4. Burnet, M.: Cancer; a biological approach. I. The processes of control. Br. Med. J. 1(5022), 779–786 (1957)

    Article  Google Scholar 

  5. Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell. 100(1), 57–70 (2000)

    Article  Google Scholar 

  6. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell. 144(5), 646–674 (2011). https://doi.org/10.1016/j.cell.2011.02.013

    Article  Google Scholar 

  7. Steeg, P.S., Clare, S.E., Lawrence, J.A., Zhou, Q.: Molecular analysis of premalignant and carcinoma in situ lesions of the human breast. Am. J. Pathol. 149(3), 733–738 (1996)

    Google Scholar 

  8. Liang, X.J., Chen, C., Zhao, Y., Wang, P.C.: Circumventing tumor resistance to chemotherapy by nanotechnology. Methods Mol. Biol. 596, 467–488 (2010). https://doi.org/10.1007/978-1-60761-416-6_21

    Article  Google Scholar 

  9. Cary, K.C., Cooperberg, M.R.: Biomarkers in prostate cancer surveillance and screening: past, present, and future. Ther. Adv. Urol. 5(6), 318–329 (2013). https://doi.org/10.1177/1756287213495915

    Article  Google Scholar 

  10. Nedaeinia, R., Manian, M., Jazayeri, M.H., Ranjbar, M., Salehi, R., Sharifi, M., Mohaghegh, F., Goli, M., Jahednia, S.H., Avan, A., Ghayour-Mobarhan, M.: Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer. Cancer Gene Ther. 24(2), 48–56 (2017). https://doi.org/10.1038/cgt.2016.77

    Article  Google Scholar 

  11. Zhu, A., Lee, D., Shim, H.: Metabolic PET imaging in cancer detection and therapy response. Semin. Oncol. 38(1), 55–69 (2011). https://doi.org/10.1053/j.seminoncol.2010.11.012

    Article  Google Scholar 

  12. Erkan, M., Hausmann, S., Michalski, C.W., Fingerle, A.A., Dobritz, M., Kleeff, J., Friess, H.: The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat. Rev. Gastroenterol. Hepatol. 9(8), 454–467 (2012). https://doi.org/10.1038/nrgastro.2012.115

    Article  Google Scholar 

  13. Cheung-Ong, K., Giaever, G., Nislow, C.: DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem. Biol. 20(5), 648–659 (2013). https://doi.org/10.1016/j.chembiol.2013.04.007

    Article  Google Scholar 

  14. Senese, S., Lo, Y.C., Huang, D., Zangle, T.A., Gholkar, A.A., Robert, L., Homet, B., Ribas, A., Summers, M.K., Teitell, M.A., Damoiseaux, R., Torres, J.Z.: Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development. Cell Death Dis. 5, e1462 (2014). https://doi.org/10.1038/cddis.2014.420

    Article  Google Scholar 

  15. Boussios, S., Pentheroudakis, G., Katsanos, K., Pavlidis, N.: Systemic treatment-induced gastrointestinal toxicity: incidence, clinical presentation and management. Ann. Gastroenterol. 25(2), 106–118 (2012)

    Google Scholar 

  16. Paus, R., Haslam, I.S., Sharov, A.A., Botchkarev, V.A.: Pathobiology of chemotherapy-induced hair loss. Lancet Oncol. 14(2), e50–e59 (2013). https://doi.org/10.1016/S1470-2045(12)70553-3

    Article  Google Scholar 

  17. Noble, C.O., Krauze, M.T., Drummond, D.C., Yamashita, Y., Saito, R., Berger, M.S., Kirpotin, D.B., Bankiewicz, K.S., Park, J.W.: Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors: pharmacology and efficacy. Cancer Res. 66(5), 2801–2806 (2006). https://doi.org/10.1158/0008-5472.CAN-05-3535

    Article  Google Scholar 

  18. Dowell, J.A., Sancho, A.R., Anand, D., Wolf, W.: Noninvasive measurements for studying the tumoral pharmacokinetics of platinum anticancer drugs in solid tumors. Adv. Drug Deliv. Rev. 41(1), 111–126 (2000)

    Article  Google Scholar 

  19. Gangloff, A., Hsueh, W.A., Kesner, A.L., Kiesewetter, D.O., Pio, B.S., Pegram, M.D., Beryt, M., Townsend, A., Czernin, J., Phelps, M.E., Silverman, D.H.: Estimation of paclitaxel biodistribution and uptake in human-derived xenografts in vivo with (18)F-fluoropaclitaxel. J. Nucl. Med. 46(11), 1866–1871 (2005)

    Google Scholar 

  20. Teicher, B.A., Chari, R.V.: Antibody conjugate therapeutics: challenges and potential. Clin. Cancer Res. 17(20), 6389–6397 (2011). https://doi.org/10.1158/1078-0432.CCR-11-1417

    Article  Google Scholar 

  21. Ding, H., Wu, F.: Image guided biodistribution and pharmacokinetic studies of theranostics. Theranostics. 2(11), 1040–1053 (2012). https://doi.org/10.7150/thno.4652

    Article  Google Scholar 

  22. Adams, G.P., Schier, R., McCall, A.M., Simmons, H.H., Horak, E.M., Alpaugh, R.K., Marks, J.D., Weiner, L.M.: High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res. 61(12), 4750–4755 (2001)

    Google Scholar 

  23. Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R.: Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2(12), 751–760 (2007). https://doi.org/10.1038/nnano.2007.387

    Article  Google Scholar 

  24. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., Hori, K.: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release. 65(1–2), 271–284 (2000)

    Article  Google Scholar 

  25. Clark, A.J., Wiley, D.T., Zuckerman, J.E., Webster, P., Chao, J., Lin, J., Yen, Y., Davis, M.E.: CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. Proc. Natl. Acad. Sci. U. S. A. 113(14), 3850–3854 (2016). https://doi.org/10.1073/pnas.1603018113

    Article  Google Scholar 

  26. Gao, N., Bozeman, E.N., Qian, W., Wang, L., Chen, H., Lipowska, M., Staley, C.A., Wang, Y.A., Mao, H., Yang, L.: Tumor penetrating theranostic nanoparticles for enhancement of targeted and image-guided drug delivery into peritoneal tumors following intraperitoneal delivery. Theranostics. 7(6), 1689–1704 (2017)

    Article  Google Scholar 

  27. Prabhakar, U., Maeda, H., Jain, R.K., Sevick-Muraca, E.M., Zamboni, W., Farokhzad, O.C., Barry, S.T., Gabizon, A., Grodzinski, P., Blakey, D.C.: Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73(8), 2412–2417 (2013). https://doi.org/10.1158/0008-5472.CAN-12-4561

    Article  Google Scholar 

  28. Farokhzad, O.C., Langer, R.: Impact of nanotechnology on drug delivery. ACS Nano. 3(1), 16–20 (2009). https://doi.org/10.1021/nn900002m

    Article  Google Scholar 

  29. Aggarwal, P., Hall, J.B., McLeland, C.B., Dobrovolskaia, M.A., McNeil, S.E.: Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 61(6), 428–437 (2009). https://doi.org/10.1016/j.addr.2009.03.009

    Article  Google Scholar 

  30. Choi, H.S., Liu, W., Liu, F., Nasr, K., Misra, P., Bawendi, M.G., Frangioni, J.V.: Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol. 5(1), 42–47 (2010). https://doi.org/10.1038/nnano.2009.314

    Article  Google Scholar 

  31. Kadam, R.S., Bourne, D.W., Kompella, U.B.: Nano-advantage in enhanced drug delivery with biodegradable nanoparticles: contribution of reduced clearance. Drug Metab. Dispos. 40(7), 1380–1388 (2012). https://doi.org/10.1124/dmd.112.044925

    Article  Google Scholar 

  32. Pietras, K., Ostman, A.: Hallmarks of cancer: interactions with the tumor stroma. Exp. Cell Res. 316(8), 1324–1331 (2010). https://doi.org/10.1016/j.yexcr.2010.02.045

    Article  Google Scholar 

  33. Tlsty, T.D., Coussens, L.M.: Tumor stroma and regulation of cancer development. Annu. Rev. Pathol. 1, 119–150 (2006). https://doi.org/10.1146/annurev.pathol.1.110304.100224

    Article  Google Scholar 

  34. Jain, R.K., Stylianopoulos, T.: Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7(11), 653–664 (2010). https://doi.org/10.1038/nrclinonc.2010.139

    Article  Google Scholar 

  35. Dudley, A.C.: Tumor endothelial cells. Cold Spring Harb. Perspect. Med. 2(3), a006536 (2012). https://doi.org/10.1101/cshperspect.a006536

    Article  Google Scholar 

  36. Bergers, G., Hanahan, D.: Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer. 8(8), 592–603 (2008). https://doi.org/10.1038/nrc2442

    Article  Google Scholar 

  37. Ariffin, A.B., Forde, P.F., Jahangeer, S., Soden, D.M., Hinchion, J.: Releasing pressure in tumors: what do we know so far and where do we go from here? A review. Cancer Res. 74(10), 2655–2662 (2014). https://doi.org/10.1158/0008-5472.CAN-13-3696

    Article  Google Scholar 

  38. Stylianopoulos, T., Martin, J.D., Chauhan, V.P., Jain, S.R., Diop-Frimpong, B., Bardeesy, N., Smith, B.L., Ferrone, C.R., Hornicek, F.J., Boucher, Y., Munn, L.L., Jain, R.K.: Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl. Acad. Sci. U. S. A. 109(38), 15101–15108 (2012). https://doi.org/10.1073/pnas.1213353109

    Article  Google Scholar 

  39. Bareford, L.M., Swaan, P.W.: Endocytic mechanisms for targeted drug delivery. Adv. Drug Deliv. Rev. 59(8), 748–758 (2007). https://doi.org/10.1016/j.addr.2007.06.008

    Article  Google Scholar 

  40. Jain, R.K.: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 307(5706), 58–62 (2005). https://doi.org/10.1126/science.1104819

    Article  Google Scholar 

  41. Franklin, R.A., Liao, W., Sarkar, A., Kim, M.V., Bivona, M.R., Liu, K., Pamer, E.G., Li, M.O.: The cellular and molecular origin of tumor-associated macrophages. Science. 344(6186), 921–925 (2014). https://doi.org/10.1126/science.1252510

    Article  Google Scholar 

  42. Mielgo, A., Schmid, M.C.: Impact of tumour associated macrophages in pancreatic cancer. BMB Rep. 46(3), 131–138 (2013)

    Article  Google Scholar 

  43. Yuan, Z.Y., Luo, R.Z., Peng, R.J., Wang, S.S., Xue, C.: High infiltration of tumor-associated macrophages in triple-negative breast cancer is associated with a higher risk of distant metastasis. Onco Targets Ther. 7, 1475–1480 (2014). https://doi.org/10.2147/OTT.S61838

    Article  Google Scholar 

  44. Jokerst, J.V., Lobovkina, T., Zare, R.N., Gambhir, S.S.: Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond.). 6(4), 715–728 (2011). https://doi.org/10.2217/nnm.11.19

    Article  Google Scholar 

  45. Li, Y., Lin, R., Wang, L., Huang, J., Wu, H., Cheng, G., Zhou, Z., MacDonald, T., Yang, L., Mao, H.: PEG-b-AGE polymer coated magnetic nanoparticle probes with facile functionalization and anti-fouling properties for reducing non-specific uptake and improving biomarker targeting. J. Mater. Chem. B Mater. Biol. Med. 3(17), 3591–3603 (2015). https://doi.org/10.1039/C4TB01828A

    Article  Google Scholar 

  46. Mills, C.D., Lenz, L.L., Harris, R.A.: A breakthrough: macrophage-directed cancer immunotherapy. Cancer Res. 76(3), 513–516 (2016). https://doi.org/10.1158/0008-5472.CAN-15-1737

    Article  Google Scholar 

  47. Vinogradov, S., Warren, G., Wei, X.: Macrophages associated with tumors as potential targets and therapeutic intermediates. Nanomedicine (Lond.). 9(5), 695–707 (2014). https://doi.org/10.2217/nnm.14.13

    Article  Google Scholar 

  48. Miao, L., Newby, J.M., Lin, C.M., Zhang, L., Xu, F., Kim, W.Y., Forest, M.G., Lai, S.K., Milowsky, M.I., Wobker, S.E., Huang, L.: The binding site barrier elicited by tumor-associated fibroblasts interferes disposition of nanoparticles in stroma-vessel type tumors. ACS Nano. 10, 9243 (2016). https://doi.org/10.1021/acsnano.6b02776

    Article  Google Scholar 

  49. Winograd, R., Byrne, K.T., Evans, R.A., Odorizzi, P.M., Meyer, A.R., Bajor, D.L., Clendenin, C., Stanger, B.Z., Furth, E.E., Wherry, E.J., Vonderheide, R.H.: Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol. Res. 3(4), 399–411 (2015). https://doi.org/10.1158/2326-6066.CIR-14-0215

    Article  Google Scholar 

  50. Topalian, S.L., Drake, C.G., Pardoll, D.M.: Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr. Opin. Immunol. 24(2), 207–212 (2012). https://doi.org/10.1016/j.coi.2011.12.009

    Article  Google Scholar 

  51. Brahmer, J.R., Tykodi, S.S., Chow, L.Q., Hwu, W.J., Topalian, S.L., Hwu, P., Drake, C.G., Camacho, L.H., Kauh, J., Odunsi, K., Pitot, H.C., Hamid, O., Bhatia, S., Martins, R., Eaton, K., Chen, S., Salay, T.M., Alaparthy, S., Grosso, J.F., Korman, A.J., Parker, S.M., Agrawal, S., Goldberg, S.M., Pardoll, D.M., Gupta, A., Wigginton, J.M.: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366(26), 2455–2465 (2012). https://doi.org/10.1056/NEJMoa1200694

    Article  Google Scholar 

  52. Pardoll, D.M.: The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 12(4), 252–264 (2012). https://doi.org/10.1038/nrc3239

    Article  Google Scholar 

  53. Burrell, R.A., McGranahan, N., Bartek, J., Swanton, C.: The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 501(7467), 338–345 (2013). https://doi.org/10.1038/nature12625

    Article  Google Scholar 

  54. Denison, T.A., Bae, Y.H.: Tumor heterogeneity and its implication for drug delivery. J. Control. Release. 164(2), 187–191 (2012). https://doi.org/10.1016/j.jconrel.2012.04.014

    Article  Google Scholar 

  55. Holohan, C., Van Schaeybroeck, S., Longley, D.B., Johnston, P.G.: Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer. 13(10), 714–726 (2013). https://doi.org/10.1038/nrc3599

    Article  Google Scholar 

  56. Choi, C.H.: ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int. 5, 30 (2005). https://doi.org/10.1186/1475-2867-5-30

    Article  Google Scholar 

  57. Goldstein, L.J., Galski, H., Fojo, A., Willingham, M., Lai, S.L., Gazdar, A., Pirker, R., Green, A., Crist, W., Brodeur, G.M., et al.: Expression of a multidrug resistance gene in human cancers. J. Natl. Cancer Inst. 81(2), 116–124 (1989)

    Article  Google Scholar 

  58. Aller, S.G., Yu, J., Ward, A., Weng, Y., Chittaboina, S., Zhuo, R., Harrell, P.M., Trinh, Y.T., Zhang, Q., Urbatsch, I.L., Chang, G.: Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science. 323(5922), 1718–1722 (2009). https://doi.org/10.1126/science.1168750

    Article  Google Scholar 

  59. Dean, M., Fojo, T., Bates, S.: Tumour stem cells and drug resistance. Nat. Rev. Cancer. 5(4), 275–284 (2005). https://doi.org/10.1038/nrc1590

    Article  Google Scholar 

  60. Townsend, D.M., Tew, K.D.: The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene. 22(47), 7369–7375 (2003). https://doi.org/10.1038/sj.onc.1206940

    Article  Google Scholar 

  61. Rendic, S.: Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab. Rev. 34(1–2), 83–448 (2002). https://doi.org/10.1081/DMR-120001392

    Article  Google Scholar 

  62. Raha, D., Wilson, T.R., Peng, J., Peterson, D., Yue, P., Evangelista, M., Wilson, C., Merchant, M., Settleman, J.: The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation. Cancer Res. 74(13), 3579–3590 (2014). https://doi.org/10.1158/0008-5472.CAN-13-3456

    Article  Google Scholar 

  63. Longley, D.B., Harkin, D.P., Johnston, P.G.: 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer. 3(5), 330–338 (2003). https://doi.org/10.1038/nrc1074

    Article  Google Scholar 

  64. Xu, S., Olenyuk, B.Z., Okamoto, C.T., Hamm-Alvarez, S.F.: Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv. Drug Deliv. Rev. 65(1), 121–138 (2013). https://doi.org/10.1016/j.addr.2012.09.041

    Article  Google Scholar 

  65. Blanco, E., Shen, H., Ferrari, M.: Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33(9), 941–951 (2015). https://doi.org/10.1038/nbt.3330

    Article  Google Scholar 

  66. Yuan, Y.Y., Mao, C.Q., Du, X.J., Du, J.Z., Wang, F., Wang, J.: Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor. Adv. Mater. 24(40), 5476–5480 (2012). https://doi.org/10.1002/adma.201202296

    Article  Google Scholar 

  67. Shim, M.S., Kwon, Y.J.: Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv. Drug Deliv. Rev. 64(11), 1046–1059 (2012). https://doi.org/10.1016/j.addr.2012.01.018

    Article  Google Scholar 

  68. Vu, T., Claret, F.X.: Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front. Oncol. 2, 62 (2012). https://doi.org/10.3389/fonc.2012.00062

    Article  Google Scholar 

  69. Koyama, S., Akbay, E.A., Li, Y.Y., Herter-Sprie, G.S., Buczkowski, K.A., Richards, W.G., Gandhi, L., Redig, A.J., Rodig, S.J., Asahina, H., Jones, R.E., Kulkarni, M.M., Kuraguchi, M., Palakurthi, S., Fecci, P.E., Johnson, B.E., Janne, P.A., Engelman, J.A., Gangadharan, S.P., Costa, D.B., Freeman, G.J., Bueno, R., Hodi, F.S., Dranoff, G., Wong, K.K., Hammerman, P.S.: Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 7, 10501 (2016). https://doi.org/10.1038/ncomms10501

    Article  Google Scholar 

  70. Sharma, P., Hu-Lieskovan, S., Wargo, J.A., Ribas, A.: Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 168(4), 707–723 (2017). https://doi.org/10.1016/j.cell.2017.01.017

    Article  Google Scholar 

  71. Zaretsky, J.M., Garcia-Diaz, A., Shin, D.S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovan, S., Torrejon, D.Y., Abril-Rodriguez, G., Sandoval, S., Barthly, L., Saco, J., Homet Moreno, B., Mezzadra, R., Chmielowski, B., Ruchalski, K., Shintaku, I.P., Sanchez, P.J., Puig-Saus, C., Cherry, G., Seja, E., Kong, X., Pang, J., Berent-Maoz, B., Comin-Anduix, B., Graeber, T.G., Tumeh, P.C., Schumacher, T.N., Lo, R.S., Ribas, A.: Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375(9), 819–829 (2016). https://doi.org/10.1056/NEJMoa1604958

    Article  Google Scholar 

  72. McCormick, F.: KRAS as a therapeutic target. Clin. Cancer Res. 21(8), 1797–1801 (2015). https://doi.org/10.1158/1078-0432.CCR-14-2662

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lily Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bozeman, E.N., Yang, L. (2019). Biological Events and Barriers to Effective Delivery of Cancer Therapeutics. In: Rai, P., Morris, S.A. (eds) Nanotheranostics for Cancer Applications. Bioanalysis, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-01775-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01775-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01773-6

  • Online ISBN: 978-3-030-01775-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics