Skip to main content

The Role of Monitoring Time and Detectors Efficiencies in Time-Continuous Quantum Magnetometry

  • Conference paper
  • First Online:
  • 296 Accesses

Abstract

We consider the estimation of a weak magnetic field B acting on a continuously monitored ensemble of atoms subjected to collective transverse noise. If N atoms are prepared in a coherent spin state and are not continuously monitored, the estimation precision scales with the total number of atoms according to the standard quantum limit \(\delta B^2 \sim 1/N\). Remarkably, time-continuous monitoring of light that is coupled with the atomic ensemble, allows to achieve a Heisenberg limited precision \(\delta B^2 \sim 1/N^2\). However this is typically obtained only for a large enough number of atoms N and with an asymptotic constant factor depending on the parameters characterizing the experiment. In this proceeding, after reviewing the analytical derivation of the effective quantum Fisher information that quantifies the ultimate precision achievable, we specifically address the role played by monitoring time and detectors measurement efficiency in obtaining a Heisenberg limited scaling. In particular we analyze the dependence on these experimentally relevant parameters of the asymptotic constant factor characterizing the effective quantum Fisher information, and, more importantly, the minimum value of atoms needed to observe the desired quantum enhancement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V. Giovannetti, S. Lloyd, L. Maccone, Nat. Photonics 5, 222 (2011). https://doi.org/10.1038/nphoton.2011.35. http://www.nature.com/doifinder/10.1038/nphoton.2011.35

  2. R. Demkowicz-Dobrzanski, M. Jarzyna, J. Kolodynski, Prog. Opt. 60, 345 (2015). https://doi.org/10.1016/bs.po.2015.02.003. http://arxiv.org/abs/1405.7703linkinghub.elsevier.com/retrieve/pii/S0079663815000049

  3. W. Wasilewski, K. Jensen, H. Krauter, J.J. Renema, M.V. Balabas, E.S. Polzik, Phys. Rev. Lett. 104(13), 133601 (2010). https://doi.org/10.1103/PhysRevLett.104.133601. https://link.aps.org/doi/10.1103/PhysRevLett.104.133601

  4. M. Koschorreck, M. Napolitano, B. Dubost, M.W. Mitchell, Phys. Rev. Lett. 104(9), 093602 (2010). https://doi.org/10.1103/PhysRevLett. 104.093602. https://link.aps.org/doi/10.1103/PhysRevLett.104.093602

  5. R.J. Sewell, M. Koschorreck, M. Napolitano, B. Dubost, N. Behbood, M.W. Mitchell, Phys. Rev. Lett. 109(25), 253605 (2012). https://doi.org/10.1103/PhysRevLett.109.253605. https://link.aps.org/doi/10.1103/PhysRevLett.109.253605

  6. C.F. Ockeloen, R. Schmied, M.F. Riedel, P. Treutlein, Phys. Rev. Lett. 111(14), 143001 (2013). https://doi.org/10.1103/PhysRevLett. 111.143001. https://link.aps.org/doi/10.1103/PhysRevLett.111.143001

  7. D. Sheng, S. Li, N. Dural, M.V. Romalis, Phys. Rev. Lett. 110(16), 160802 (2013). https://doi.org/10.1103/PhysRevLett.110.160802. https://link.aps.org/doi/10.1103/PhysRevLett.110.160802

  8. V.G. Lucivero, P. Anielski, W. Gawlik, M.W. Mitchell, Rev. Sci. Instrum. 85(11), 113108 (2014). https://doi.org/10.1063/1.4901588. http://arxiv.org/abs/1403.7796, http://dx.doi.org/10.1063/1.4901588, http://aip.scitation.org/doi/10.1063/1.4901588

  9. W. Muessel, H. Strobel, D. Linnemann, D.B. Hume, M.K. Oberthaler, Phys. Rev. Lett. 113(10), 103004 (2014). https://doi.org/10.1103/PhysRevLett. 113.103004. https://link.aps.org/doi/10.1103/PhysRevLett.113.103004

  10. D.J. Wineland, J.J. Bollinger, W.M. Itano, F.L. Moore, D.J. Heinzen, Phys. Rev. A 46(11), R6797 (1992). https://doi.org/10.1103/PhysRevA.46.R6797. http://link.aps.org/doi/10.1103/PhysRevA.46.R6797

  11. J.J. Bollinger, W. Itano, D.J. Wineland, D.J. Heinzen, Phys. Rev. A 54(6), R4649 (1996). https://doi.org/10.1103/PhysRevA.54.R4649

    Article  ADS  Google Scholar 

  12. S.F. Huelga, C. Macchiavello, T. Pellizzari, A.K. Ekert, M.B. Plenio, J.I. Cirac, Phys. Rev. Lett. 79(20), 3865 (1997). https://doi.org/10.1103/PhysRevLett.79.3865. https://link.aps.org/doi/10.1103/PhysRevLett.79.3865

  13. B.M. Escher, R.L. de Matos Filho, L. Davidovich, Nat. Phys. 7(5), 406 (2011). https://doi.org/10.1038/nphys1958. http://dx.doi.org/10.1038/nphys1958, http://www.nature.com/doifinder/10.1038/nphys1958

  14. R. Demkowicz-Dobrzanski, J. Kolodynski, M. Guta, Nat. Commun. 3, 1063 (2012). https://doi.org/10.1038/ncomms2067. http://www.nature.com/doifinder/10.1038/ncomms2067

  15. Y. Matsuzaki, S.C. Benjamin, J. Fitzsimons, Phys. Rev. A 84(1), 012103 (2011). https://doi.org/10.1103/PhysRevA.84.012103. https://link.aps.org/doi/10.1103/PhysRevA.84.012103

  16. A.W. Chin, S.F. Huelga, M.B. Plenio, Phys. Rev. Lett. 109(23), 233601 (2012). https://doi.org/10.1103/PhysRevLett. 109.233601. https://link.aps.org/doi/10.1103/PhysRevLett.109.233601

  17. R. Chaves, J.B. Brask, M. Markiewicz, J. Kolodynski, A. Acin, Phys. Rev. Lett. 111(12), 120401 (2013). https://doi.org/10.1103/PhysRevLett. 111.120401. https://link.aps.org/doi/10.1103/PhysRevLett.111.120401

  18. J.B. Brask, R. Chaves, J. Kolodynski, Phys. Rev. X 5(3), 031010 (2015). https://doi.org/10.1103/PhysRevX.5.031010. http://arxiv.org/abs/1411.0716, http://link.aps.org/doi/10.1103/PhysRevX.5.031010

  19. A. Smirne, J. Kolodynski, S.F. Huelga, R. Demkowicz-Dobrzanski, Phys. Rev. Lett. 116(12), 120801 (2016). https://doi.org/10.1103/PhysRevLett.116.120801. http://link.aps.org/doi/10.1103/PhysRevLett.116.120801

  20. E.M. Kessler, I. Lovchinsky, A.O. Sushkov, M.D. Lukin, Phys. Rev. Lett. 112(15), 150802 (2014). https://doi.org/10.1103/PhysRevLett.112.150802. https://link.aps.org/doi/10.1103/PhysRevLett.112.150802

  21. W. Dur, M. Skotiniotis, F. Frowis, B. Kraus, Phys. Rev. Lett. 112(8), 080801 (2014). https://doi.org/10.1103/PhysRevLett.112.080801. http://link.aps.org/doi/10.1103/PhysRevLett.112.080801

  22. G. Arrad, Y. Vinkler, D. Aharonov, A. Retzker, Phys. Rev. Lett. 112(15), 150801 (2014). https://doi.org/10.1103/PhysRevLett.112.150801. https://link.aps.org/doi/10.1103/PhysRevLett.112.150801

  23. P. Sekatski, M. Skotiniotis, J. Kolodynski, W. Dur, Quantum. https://doi.org/10.22331/q-2017-09-06-27. https://doi.org/10.22331/q-2017-09-06-27

  24. T. Unden, P. Balasubramanian, D. Louzon, Y. Vinkler, M.B. Plenio, M. Markham, D. Twitchen, A. Stacey, I. Lovchinsky, A.O. Sushkov, M.D. Lukin, A. Retzker, B. Naydenov, L.P. McGuinness, F. Jelezko, Phys. Rev. Lett. 116, 230502 (2016). https://doi.org/10.1103/PhysRevLett.116.230502. https://link.aps.org/doi/10.1103/PhysRevLett.116.230502

  25. S. Zhou, M. Zhang, J. Preskill, L. Jiang, ArXiv e-prints (2017)

    Google Scholar 

  26. R. Demkowicz-Dobrzanski, J. Czajkowski, P. Sekatski, ArXiv e-prints (2017)

    Google Scholar 

  27. H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press, New York, 2010)

    MATH  Google Scholar 

  28. K. Jacobs, D.A. Steck, Contemp. Phys. 47(5), 279 (2006). https://doi.org/10.1080/00107510601101934. http://www.tandfonline.com/doi/abs/10.1080/00107510601101934

  29. J.M. Geremia, J.K. Stockton, A.C. Doherty, H. Mabuchi, Phys. Rev. Lett. 91(25), 250801 (2003). https://doi.org/10.1103/PhysRevLett. 91.250801. http://link.aps.org/doi/10.1103/PhysRevLett.91.250801

  30. J.K. Stockton, J.M. Geremia, A.C. Doherty, H. Mabuchi, Phys. Rev. A 69(3), 032109 (2004). https://doi.org/10.1103/PhysRevA.69.032109. https://link.aps.org/doi/10.1103/PhysRevA.69.032109

  31. M. Auzinsh, D. Budker, D.F. Kimball, S.M. Rochester, J.E. Stalnaker, A.O. Sushkov, V.V. Yashchuk, Phys. Rev. Lett. 93(17), 173002 (2004). https://doi.org/10.1103/PhysRevLett.93.173002. https://link.aps.org/doi/10.1103/PhysRevLett.93.173002

  32. K. Molmer, L.B. Madsen, Phys. Rev. A 70(5), 052102 (2004). https://doi.org/10.1103/PhysRevA.70.052102. https://link.aps.org/doi/10.1103/PhysRevA.70.052102

  33. L.B. Madsen, K. Molmer, Phys. Rev. A 70(5), 052324 (2004). https://doi.org/10.1103/PhysRevA.70.052324. https://link.aps.org/doi/10.1103/PhysRevA.70.052324

  34. B.A. Chase, J.M. Geremia, Phys. Rev. A 79(2), 022314 (2009). https://doi.org/10.1103/PhysRevA.79.022314. https://link.aps.org/doi/10.1103/PhysRevA.79.022314

  35. S. Gammelmark, K. Molmer, Phys. Rev. A 87(3), 032115 (2013). https://doi.org/10.1103/PhysRevA.87.032115. http://link.aps.org/doi/10.1103/PhysRevA.87.032115

  36. S. Gammelmark, K. Molmer, Phys. Rev. Lett. 112(17), 170401 (2014). https://doi.org/10.1103/PhysRevLett.112.170401. http://link.aps.org/doi/10.1103/PhysRevLett.112.170401

  37. A.H. Kiilerich, K. Molmer, Phys. Rev. A 89(5), 052110 (2014). https://doi.org/10.1103/PhysRevA.89.052110. http://link.aps.org/doi/10.1103/PhysRevA.89.052110

  38. A.H. Kiilerich, K. Molmer, Phys. Rev. A 94(3), 032103 (2016). https://doi.org/10.1103/PhysRevA.94.032103. http://link.aps.org/doi/10.1103/PhysRevA.94.032103

  39. C. Catana, M. Guta, Phys. Rev. A 90(1), 012330 (2014). https://doi.org/10.1103/PhysRevA.90.012330. https://link.aps.org/doi/10.1103/PhysRevA.90.012330

  40. T. Gefen, D.A. Herrera-Marti, A. Retzker, Phys. Rev. A 93(3), 032133 (2016). https://doi.org/10.1103/PhysRevA.93.032133. http://link.aps.org/doi/10.1103/PhysRevA.93.032133

  41. M.B. Plenio, S.F. Huelga, Phys. Rev. A 93(3), 032123 (2016). https://doi.org/10.1103/PhysRevA.93.032123. https://link.aps.org/doi/10.1103/PhysRevA.93.032123

  42. L. Cortez, A. Chantasri, L.P. Garcia-Pintos, J. Dressel, A.N. Jordan, Phys. Rev. A 95(1), 012314 (2017). https://doi.org/10.1103/PhysRevA.95.012314. http://arxiv.org/abs/1606.01407, http://link.aps.org/doi/10.1103/PhysRevA.95.012314

  43. F. Albarelli, M.A.C. Rossi, M.G.A. Paris, M.G. Genoni, (2017). http://arxiv.org/abs/1706.00485

  44. L.K. Thomsen, S. Mancini, H.M. Wiseman, Phys. Rev. A 65(6), 061801 (2002). https://doi.org/10.1103/PhysRevA.65.061801. https://link.aps.org/doi/10.1103/PhysRevA.65.061801

  45. D. Plankensteiner, J. Schachenmayer, H. Ritsch, C. Genes, J. Phys. B 49, 245501 (2016). https://doi.org/10.1088/0953-4075/49/24/245501. http://arxiv.org/abs/1605.00874stacks.iop.org/0953-4075/49/i=24/a=245501?key=crossref.8d42d18e21fd8245d1b3c7a202188cc1

  46. E.G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, M.D. Lukin, Phys. Rev. Lett. 110, 120402 (2013). https://doi.org/10.1103/PhysRevLett.110.120402. https://link.aps.org/doi/10.1103/PhysRevLett.110.120402

  47. U. Dorner, New J. Phys. 14(4), 043011 (2012). https://doi.org/10.1088/1367-2630/14/4/043011. http://stacks.iop.org/1367-2630/14/i=4/a=043011?key=crossref.50d99a3afee8de2c2f336d63e774ebcf

  48. M.G. Genoni, L. Lami, A. Serafini, Contemp. Phys. 57(3), 331 (2016). https://doi.org/10.1080/00107514.2015.1125624. http://www.tandfonline.com/doi/full/10.1080/00107514.2015.1125624

  49. H.M. Wiseman, A.C. Doherty, Phys. Rev. Lett. 94(7), 070405 (2005). https://doi.org/10.1103/PhysRevLett.94.070405. https://link.aps.org/doi/10.1103/PhysRevLett.94.070405

  50. C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976)

    MATH  Google Scholar 

  51. S.L. Braunstein, C.M. Caves, Phys. Rev. Lett. 72(22), 3439 (1994). https://doi.org/10.1103/PhysRevLett. 72.3439. https://link.aps.org/doi/10.1103/PhysRevLett.72.3439

  52. M.G.A. Paris, Int. J. Quant. Inf. 07(supp01), 125 (2009). https://doi.org/10.1142/S0219749909004839, http://www.worldscientific.com/doi/abs/10.1142/S0219749909004839

  53. M.G. Genoni, Phys. Rev. A 95(1), 012116 (2017). https://doi.org/10.1103/PhysRevA.95.012116. https://link.aps.org/doi/10.1103/PhysRevA.95.012116

  54. O. Pinel, P. Jian, N. Treps, C. Fabre, D. Braun, Phys. Rev. A 88(4), 040102 (2013). https://doi.org/10.1103/PhysRevA.88.040102. https://link.aps.org/doi/10.1103/PhysRevA.88.040102

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco G. Genoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Albarelli, F., Rossi, M.A.C., Paris, M.G.A., Genoni, M.G. (2018). The Role of Monitoring Time and Detectors Efficiencies in Time-Continuous Quantum Magnetometry. In: Bortignon, P., Lodato, G., Meroni, E., Paris, M., Perini, L., Vicini, A. (eds) Toward a Science Campus in Milan. CDIP 2017. Springer, Cham. https://doi.org/10.1007/978-3-030-01629-6_11

Download citation

Publish with us

Policies and ethics