Skip to main content

Grassmannian Flows and Applications to Nonlinear Partial Differential Equations

  • Conference paper
  • First Online:
Computation and Combinatorics in Dynamics, Stochastics and Control (Abelsymposium 2016)

Part of the book series: Abel Symposia ((ABEL,volume 13))

Included in the following conference series:

Abstract

We show how solutions to a large class of partial differential equations with nonlocal Riccati-type nonlinearities can be generated from the corresponding linearized equations, from arbitrary initial data. It is well known that evolutionary matrix Riccati equations can be generated by projecting linear evolutionary flows on a Stiefel manifold onto a coordinate chart of the underlying Grassmann manifold. Our method relies on extending this idea to the infinite dimensional case. The key is an integral equation analogous to the Marchenko equation in integrable systems, that represents the coodinate chart map. We show explicitly how to generate such solutions to scalar partial differential equations of arbitrary order with nonlocal quadratic nonlinearities using our approach. We provide numerical simulations that demonstrate the generation of solutions to Fisher–Kolmogorov–Petrovskii–Piskunov equations with nonlocal nonlinearities. We also indicate how the method might extend to more general classes of nonlinear partial differential systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We quote from the referee: “numerical integration in time will usually become inaccurate for large time t, but the nature of the exact solution gives you a precise answer for arbitrary t, and maybe allows access to information about long time behaviour which is inaccessible via standard numerical schemes.”

References

  1. Abbondandolo, A., Majer, P.: Infinite dimensional Grassmannians. J. Oper. Theory 61(1), 19–62 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Ablowitz, M.J., Ramani, A., Segur, H.: A connection between nonlinear evolution equations and ordinary differential equations of P-type II. J. Math. Phys. 21, 1006–1015 (1980)

    Article  MathSciNet  Google Scholar 

  3. Alexander, J.C., Gardner, R., Jones, C.K.R.T.: A topological invariant arising in the stability analysis of traveling waves. J. Reine Angew. Math. 410, 167–212 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Balazs, P.: Hilbert–Schmidt operators and frames—classification, best approximation by multipliers and algorithms. Int. J. Wavelets Multiresolution Inf. Process. 6(2), 315–330 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bauhardt, W., Pöppe, C.: The Zakharov–Shabat inverse spectral problem for operators. J. Math. Phys. 34(7), 3073–3086 (1993)

    Article  MathSciNet  Google Scholar 

  6. Beals, R., Coifman, R.R.: Linear spectral problems, non-linear equations and the \(\overline {\partial }\)-method. Inverse Prob. 5, 87–130 (1989)

    Google Scholar 

  7. Beck, M., Malham, S.J.A.: Computing the Maslov index for large systems. PAMS 143, 2159–2173 (2015)

    Article  MathSciNet  Google Scholar 

  8. Beck, M., Doikou, A., Malham, S.J.A., Stylianidis, I.: Partial differential systems with nonlocal nonlinearities: generation and solution. Philos. Trans. A 376(2117) (2018). https://doi.org/10.1098/rsta.2017.0195

    Article  MathSciNet  Google Scholar 

  9. Bian, S., Chen, L., Latos, E.A.: Global existence and asymptotic behavior of solutions to a nonlocal Fisher–KPP type problem. Nonlinear Anal. 149, 165–176 (2017)

    Article  MathSciNet  Google Scholar 

  10. Bittanti, S., Laub, A.J., Willems, J.C. (eds.): The Riccati Equation. Communications and Control Engineering Series. Springer, Berlin/Heidelberg (1991)

    MATH  Google Scholar 

  11. Blanchard, P., Brüning, E.: Mathematical Methods in Physics: Distributions, Hilbert Space Operators, Variational Methods, and Applications in Quantum Physics, 2nd edn. Progress in Mathematical Physics, vol. 69. Birkhäuser, Berlin (2015)

    MATH  Google Scholar 

  12. Bornemann, F.: Numerical evaluation of Fredholm determinants and Painlevé transcendents with applications to random matrix theory, talk at the Abdus Salam International Centre for Theoretical Physics (2009)

    Google Scholar 

  13. Britton, N.F.: Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model. SIAM J. Appl. Math. 50(6), 1663–1688 (1990)

    Article  MathSciNet  Google Scholar 

  14. Brockett, R.W., Byrnes, C.I.: Multivariable Nyquist criteria, root loci, and pole placement: a geometric viewpoint. IEEE Trans. Automat. Control 26(1), 271–284 (1981)

    Article  MathSciNet  Google Scholar 

  15. Christensen, O.: Frames and Bases. Springer (2008). https://doi.org/10.1007/978-0-8176-4678-3_3

    Chapter  Google Scholar 

  16. Deng, J., Jones, C.: Multi-dimensional Morse index theorems and a symplectic view of elliptic boundary value problems. Trans. Am. Math. Soc. 363(3), 1487–1508 (2011)

    Article  MathSciNet  Google Scholar 

  17. Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris H.C.: Solitons and Non-linear Wave Equations. Academic, London (1982)

    MATH  Google Scholar 

  18. Doikou, A., Malham, S.J.A., Wiese, A.: Stochastic partial differential equations with nonlocal nonlinearities and their simulation. (2018, in preparation)

    Google Scholar 

  19. Drazin, P.G., Johnson, R.S.: Solitons: An Introduction. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  20. Dyson, F.J.: Fredholm determinants and inverse scattering problems. Commun. Math. Phys. 47, 171–183 (1976)

    Article  MathSciNet  Google Scholar 

  21. Furutani, K.: Review: Fredholm–Lagrangian–Grassmannian and the Maslov index. J. Geom. Phys. 51, 269–331 (2004)

    Article  MathSciNet  Google Scholar 

  22. Grellier, S., Gerard, P.: The cubic Szegö equation and Hankel operators (2015). arXiv:1508.06814

    Google Scholar 

  23. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library, New York (1994)

    Book  Google Scholar 

  24. Guest, M.A.: From Quantum Cohomology to Integrable Systems. Oxford University Press, Oxford/New York (2008)

    MATH  Google Scholar 

  25. Hermann, R.: Cartanian Geometry, Nonlinear Waves, and Control Theory: Part A. Interdisciplinary Mathematics, vol. XX. Math Sci Press, Brookline (1979)

    Google Scholar 

  26. Hermann, R.: Cartanian Geometry, Nonlinear Waves, and Control Theory: Part B. Interdisciplinary Mathematics, vol. XXI. Math Sci Press, Brookline (1980)

    Google Scholar 

  27. Hermann, R., Martin, C.: Lie and Morse theory for periodic orbits of vector fields and matrix Riccati equations, I: general Lie-theoretic methods. Math. Syst. Theory 15, 277–284 (1982)

    MATH  Google Scholar 

  28. Karambal, I., Malham, S.J.A.: Evans function and Fredholm determinants. Proc. R. Soc. A 471(2174) (2015). https://doi.org/10.1098/rspa.2014.0597

    Article  MathSciNet  Google Scholar 

  29. McKean, H.P.: Fredholm determinants. Cent. Eur. J. Math. 9(2), 205–243 (2011)

    Article  MathSciNet  Google Scholar 

  30. Ledoux, V., Malham, S.J.A., Niesen, J., Thümmler, V.: Computing stability of multi-dimensional travelling waves. SIAM J. Appl. Dyn. Syst. 8(1), 480–507 (2009)

    Article  MathSciNet  Google Scholar 

  31. Ledoux, V., Malham, S.J.A., Thümmler, V.: Grassmannian spectral shooting. Math. Comput. 79, 1585–1619 (2010)

    Article  MathSciNet  Google Scholar 

  32. Martin, C., Hermann, R.: Applications of algebraic geometry to systems theory: the McMillan degree and Kronecker indicies of transfer functions as topological and holomorphic system invariants. SIAM J. Control Optim. 16(5), 743–755 (1978)

    Article  MathSciNet  Google Scholar 

  33. Miura, R.M.: The Korteweg–De Vries equation: a survey of results. SIAM Rev. 18(3), 412–459 (1976)

    Article  MathSciNet  Google Scholar 

  34. Miwa, T., Jimbo, M., Date, E.: Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  35. Piccione, P., Tausk, D.V.: A Student’s Guide to Symplectic Spaces, Grassmannians and Maslov Index (2008). www.ime.usp.br/~piccione/Downloads/MaslovBook.pdf

  36. Pöppe, C.: Construction of solutions of the sine-Gordon equation by means of Fredholm determinants. Physica D 9, 103–139 (1983)

    Article  MathSciNet  Google Scholar 

  37. Pöppe, C.: The Fredholm determinant method for the KdV equations. Physica D 13, 137–160 (1984)

    Article  MathSciNet  Google Scholar 

  38. Pöppe, C.: General determinants and the τ function for the Kadomtsev–Petviashvili hierarchy. Inverse Prob. 5, 613–630 (1984)

    Article  MathSciNet  Google Scholar 

  39. Pöppe, C., Sattinger, D.H.: Fredholm determinants and the τ function for the Kadomtsev–Petviashvili hierarchy. Publ. RIMS Kyoto Univ. 24, 505–538 (1988)

    Article  MathSciNet  Google Scholar 

  40. Pressley, A., Segal, G.: Loop Groups, Oxford Mathematical Monographs. Clarendon Press, Oxford (1986)

    MATH  Google Scholar 

  41. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: I Functional Analysis. Academic, New York/London (1980)

    MATH  Google Scholar 

  42. Sato, M.: Soliton equations as dynamical systems on a infinite dimensional Grassmann manifolds. RIMS 439, 30–46 (1981)

    Google Scholar 

  43. Sato, M.: The KP hierarchy and infinite dimensional Grassmann manifolds. Proc. Symposia Pure Math. 49(Part 1), 51–66 (1989)

    Google Scholar 

  44. Schiff, J., Shnider, S.: A natural approach to the numerical integration of Riccati differential equations. SIAM J. Numer. Anal. 36(5), 1392–1413 (1999)

    Article  MathSciNet  Google Scholar 

  45. Segal, G., Wilson, G.: Loop groups and equations of KdV type. Inst. Hautes Etudes Sci. Publ. Math. N 61, 5–65 (1985)

    Article  MathSciNet  Google Scholar 

  46. Simon, B.: Trace Ideals and Their Applications, 2nd edn. Mathematical Surveys and Monographs, vol. 120. AMS, Providence (2005)

    Google Scholar 

  47. Tracy, C.A., Widom, H.: Fredholm determinants and the mKdV/Sinh-Gordon hierarchies. Commun. Math. Phys. 179, 1–10 (1996)

    Article  MathSciNet  Google Scholar 

  48. Wilson, G.: Infinite-dimensional Lie groups and algebraic geometry in soliton theory. Trans. R. Soc. Lond. A 315(1533), 393–404 (1985)

    Article  MathSciNet  Google Scholar 

  49. Zakharov, V.E., Shabat, A.B.: A scheme for integrating the non-linear equation of mathematical physics by the method of the inverse scattering problem I. Funct. Anal. Appl. 8, 226 (1974)

    Article  Google Scholar 

  50. Zelikin, M.I.: Control Theory and Optimization I. Encyclopedia of Mathematical Sciences, vol. 86. Springer, Berlin/Heidelberg (2000)

    Book  Google Scholar 

Download references

Acknowledgements

We are very grateful to the referee for their detailed report and suggestions that helped significantly improve the original manuscript. We would like to thank Percy Deift, Kurusch Ebrahimi–Fard and Anke Wiese for their extremely helpful comments and suggestions. The work of M.B. was partially supported by US National Science Foundation grant DMS-1411460.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. A. Malham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beck, M., Doikou, A., Malham, S.J.A., Stylianidis, I. (2018). Grassmannian Flows and Applications to Nonlinear Partial Differential Equations. In: Celledoni, E., Di Nunno, G., Ebrahimi-Fard, K., Munthe-Kaas, H. (eds) Computation and Combinatorics in Dynamics, Stochastics and Control. Abelsymposium 2016. Abel Symposia, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-01593-0_3

Download citation

Publish with us

Policies and ethics