Skip to main content

Renormalization: A Quasi-shuffle Approach

  • Conference paper
  • First Online:
Book cover Computation and Combinatorics in Dynamics, Stochastics and Control (Abelsymposium 2016)

Part of the book series: Abel Symposia ((ABEL,volume 13))

Included in the following conference series:

Abstract

In recent years, the usual BPHZ algorithm for renormalization in perturbative quantum field theory has been interpreted, after dimensional regularization, as a Birkhoff decomposition of characters on the Hopf algebra of Feynman graphs, with values in a Rota-Baxter algebra of amplitudes. We associate in this paper to any such algebra a universal semigroup (different in nature from the Connes-Marcolli “cosmical Galois group”). Its action on the physical amplitudes associated to Feynman graphs produces the expected operations: Bogoliubov’s preparation map, extraction of divergences, renormalization. In this process a key role is played by commutative and noncommutative quasi-shuffle bialgebras whose universal properties are instrumental in encoding the renormalization process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguiar, M., Hsiao, S.K.: Canonical characters on quasi-symmetric functions and bivariate Catalan numbers. Electron. J. Combin. 11(2) (2004/06). Research Paper 15, 34 pp. (electronic)

    Google Scholar 

  2. Aguiar, M., Bergeron, N., Sottile, F.: Combinatorial Hopf algebras and generalized Dehn-Sommerville relations. Compos. Math. 142(1), 1–30 (2006)

    Article  MathSciNet  Google Scholar 

  3. Brouder, C., Frabetti, A., Krattenthaler, C.: Non-commutative Hopf algebra of formal diffeomorphisms. Adv. Math. 200(2), 479–524 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bruned, Y., Hairer, M., Zambotti, L.: Algebraic renormalisation of regularity structures. arXiv preprint arXiv:1610.08468 (2016)

    Google Scholar 

  5. Cartier, P.: A primer of Hopf algebras. In: Cartier, P.E., Julia, B., Moussa, P., Vanhove, P. (eds.) Frontiers in Number Theory, Physics, and Geometry II, pp. 537–615. Springer, Berlin/Heidelberg (2017)

    Google Scholar 

  6. Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. I: The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210(1), 249–273 (2000)

    MATH  Google Scholar 

  7. Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. II: The β-function, diffeomorphisms and the renormalization group. Commun. Math. Phys. 216(1), 215–241 (2001)

    Article  MathSciNet  Google Scholar 

  8. Connes, A., Marcolli, M.: From physics to number theory via noncommutative geometry. In: Cartier, P.E., Julia, B., Moussa, P., Vanhove, P. (eds.) Frontiers in Number Theory, Physics, and Geometry. I, pp. 269–347. Springer, Berlin (2006)

    Chapter  Google Scholar 

  9. Ebrahimi-Fard, K., Patras, F.: Exponential Renormalization Annales Henri Poincar 11(5), 943–971 (2010)

    Google Scholar 

  10. Ebrahimi-Fard, K., Patras, F.: Exponential Renormalization II: Bogoliubov’s R-operation and momentum subtraction schemes. J. Math. Phys. 53(8), 15 (2012)

    Article  Google Scholar 

  11. Ebrahimi-Fard, K., Guo, L., Kreimer, D.: Integrable renormalization. I: the ladder case. J. Math. Phys. 45(10), 3758–3769 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Ebrahimi-Fard, K., Guo, L., Manchon, D.: Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion. Commun. Math. Phys. 267(3), 821–845 (2006)

    Article  MathSciNet  Google Scholar 

  13. Ebrahimi-Fard, K., Gracia-Bondia, J., Patras, F.: A Lie theoretic approach to renormalization. Commun. Math. Phys. 276, 519–549 (2007)

    Article  MathSciNet  Google Scholar 

  14. Ebrahimi-Fard, K., Manchon, D., Patras, F.: A noncommutative Bohnenblust-Spitzer identity for Rota-Baxter algebras solves Bogolioubov’s recursion. J. Noncommutative Geom. 3(2), 181–222 (2009)

    Article  MathSciNet  Google Scholar 

  15. Ecalle, J.: Singularités non abordables par la géométrie. (French) [Singularities that are inaccessible by geometry] Ann. Inst. Fourier 42(1–2), 73–164 (1992)

    Article  MathSciNet  Google Scholar 

  16. Fauvet, F., Menous, F.: Ecalle’s arborification-coarborification transforms and Connes-Kreimer Hopf algebra. Ann. Sci. Éc. Norm. Supér. (4) 50(1), 39–83 (2017)

    Google Scholar 

  17. Figueroa, H., Gracia-Bondia, J.M.: Combinatorial Hopf algebras in quantum field theory. I. Rev. Math. Phys. 17(8), 881–976 (2005)

    Article  MathSciNet  Google Scholar 

  18. Foissy, L., Patras, F.: Lie theory for quasi-shuffle bialgebras. In: Periods in Quantum Field Theory and Arithmetic. Springer Proceedings in Mathematics and Statistics (to appear)

    Google Scholar 

  19. Frabetti, A., Manchon, D.: Five interpretations of Fa Di Bruno’s formula. In: Dyson-Schwinger Equations and Fa Di Bruno Hopf Algebras in Physics and Combinatorics, edited by European Mathematical Society, pp. 5–65. Strasbourg, France (2011)

    Google Scholar 

  20. Guo, L., Zhang, B.: Renormalization of multiple zeta values. J. Algebra 319(9), 3770–3809 (2008)

    Article  MathSciNet  Google Scholar 

  21. Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)

    Article  MathSciNet  Google Scholar 

  22. Hoffman, M.E.: Quasi-shuffle products. J. Algebraic Combin. 11(1), 49–68 (2000)

    Article  MathSciNet  Google Scholar 

  23. Hoffman, M.E., Ihara, K.: Quasi-shuffle products revisited. J. Algebra 481, 293–326 (2017)

    Article  MathSciNet  Google Scholar 

  24. Karandikar, R.L.: Multiplicative decomposition of non-singular matrix valued continuous semimartingales. Ann. Probab. 10(4), 1088–1091 (1982)

    Article  MathSciNet  Google Scholar 

  25. Kreimer, D.: Chen’s iterated integral represents the operator product expansion. Adv. Theor. Math. Phys. 3(3), 627–670 (1999)

    Article  MathSciNet  Google Scholar 

  26. Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  27. Manchon, D., Paycha, S.: Shuffle relations for regularised integrals of symbols. Commun. Math. Phys. 270, 13–51 (2007)

    Article  MathSciNet  Google Scholar 

  28. Menous, F.: On the stability of some groups of formal diffeomorphisms by the Birkhoff decomposition. Adv. Math. 216(1), 1–28 (2007)

    Article  MathSciNet  Google Scholar 

  29. Menous, F.: Formal differential equations and renormalization. Connes, Alain (ed.) et al., Renormalization and Galois theories. European Mathematical Society, IRMA Lectures in Mathematics and Theoretical Physics 15, 229–246 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Menous, F.: Formulas for the Connes-Moscovici Hopf Algebra. In: Ebrahimi-Fard, K., et al. (eds.) Combinatorics and Physics. Contemporary Mathematics, vol. 539, pp. 269–285 (2011)

    Article  MathSciNet  Google Scholar 

  31. Menous, F.: From dynamical systems to renormalization. J. Math. Phys. 54(9), 24 (2013)

    Article  MathSciNet  Google Scholar 

  32. Menous, F., Patras, F.: Logarithmic derivatives and generalized Dynkin operators. J. Algebraic Combin. 38(4), 901–913 (2013)

    Article  MathSciNet  Google Scholar 

  33. Murua, A., Sanz-Serna, J.M.: Computing normal forms and formal invariants of dynamical systems by means of word series. Nonlinear Anal. Theory Methods Appl. 138, 326–345 (2016)

    Article  MathSciNet  Google Scholar 

  34. Patras, F.: L’algèbre des descentes d’une bigèbre graduée. J. Algebra 170(2), 547–566 (1994)

    Article  MathSciNet  Google Scholar 

  35. Patras, F.: Dynkin operators and renormalization group actions in pQFT. In: Bergvelt, M., Yamskulna, G., Zhao, W. (eds.) Vertex Operator Algebras and Related Areas. Contemporary Mathematics, vol. 497, pp. 169–184. American Mathematical Society, Providence (2009)

    Chapter  Google Scholar 

  36. Schützenberger, M.-P.: Sur une propriété combinatoire des algèbres de Lie libres pouvant être utilisée dans un problème de mathématiques appliquées, Séminaire Dubreil–Jacotin Pisot (Algèbre et théorie des nombres) (1958/1959)

    Google Scholar 

  37. Sweedler, M.E.: Hopf algebras. W.A. Benjamin, Inc., New York (1969)

    MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the CARMA grant ANR-12-BS01-0017, “Combinatoire Algébrique, Résurgence, Moules et Applications”and the CNRS GDR “Renormalisation”. We thank warmly K. Ebrahimi-Fard, from whom we learned some years ago already the meaningfulness of Rota–Baxter algebras and their links with quasi–shuffle algebras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Menous .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Menous, F., Patras, F. (2018). Renormalization: A Quasi-shuffle Approach. In: Celledoni, E., Di Nunno, G., Ebrahimi-Fard, K., Munthe-Kaas, H. (eds) Computation and Combinatorics in Dynamics, Stochastics and Control. Abelsymposium 2016. Abel Symposia, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-01593-0_21

Download citation

Publish with us

Policies and ethics