Skip to main content

A Review on Comodule-Bialgebras

  • Conference paper
  • First Online:
Computation and Combinatorics in Dynamics, Stochastics and Control (Abelsymposium 2016)

Part of the book series: Abel Symposia ((ABEL,volume 13))

Included in the following conference series:

Abstract

We review some recent applications of the notion of comodule-bialgebra in several domains such as Combinatorics, Analysis and Quantum Field Theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By an unfortunate conflict of terminology, composition of B-series corresponds to product of arborified moulds, whereas composition of the latter corresponds to substitution of B-series.

  2. 2.

    Only the vertices are decorated here: to be precise, an Ω-decorated forest is a pair (F, d) with F being a forest and \(d:\mathcal V(F)\to \varOmega \), where \(\mathcal V(F)\) stands for the set of vertices of F.

  3. 3.

    To be pronounced french-like, with stress on the last syllable. The last vowel (here, a or e) designates the type of symmetry considered.

  4. 4.

    Some confusion can arise in the literature around the words “label” and “decoration”. Here the decorations in Ω should not be confused with the labels, which are elements of the finite set X. Two distinct elements can bear the same decoration, but never the same label.

  5. 5.

    These are not Hopf algebras anymore strictly speaking because, due to the extra \(\mathbb Z^{d'}\)-decoration of the vertices, the coproducts are given by infinite linear combinations. This issue can be handled by working in the symmetric monoidal category of bi-graded vector spaces [4, Paragraph 2.3].

  6. 6.

    Private communication.

  7. 7.

    There is a subtle point here: strictly speaking, a covering subforest of height j with j > i − 1, which is a partition of a subset of \(\mathcal V_{\ge j}\), cannot be considered as a covering subforest of height ≥ i − 1, which is a partition of \(\mathcal V_{\ge i-1}\). Informally speaking, a covering subforest of height ≥ i − 1 covers \(\mathcal V_{\ge i-1}\) whereas a covering subforest of height j only covers a set \(\mathcal E\) such that \(\mathcal V_j\subset \mathcal E\subset \mathcal V_{\ge j}\), where \(\mathcal V_{j}\) stands for the set of height j vertices of t.

References

  1. Aguiar, M., Mahajan, S.: Monoidal Functors, Species and Hopf Algebras. CRM Monograph Series, vol. 29. American Mathematical Society, Providence (2010)

    Google Scholar 

  2. Brouder, Ch.: Runge-Kutta methods and renormalization. Eur. Phys. J. C Part. Fields 12, 512–534 (2000)

    Google Scholar 

  3. Bruned, Y.: Equations singulières de type KPZ, Ph.D. Thesis, Univerity Paris 6, Dec 2015

    Google Scholar 

  4. Bruned, Y., Hairer, M., Zambotti, L.: Algebraic renormalisation of regularity structures. arXiv:1610.08468 (2016)

    Google Scholar 

  5. Bruned, Y., Chevyrev, I., Friz, P., Preiss, R.: A rough paths perspective on renormalization. arXiv:1701.01152 (2017)

    Google Scholar 

  6. Butcher, J.C.: An algebraic theory of integration methods. Math. Comput. 26, 79–106 (1972)

    Article  MathSciNet  Google Scholar 

  7. Calaque, D., Ebrahimi-Fard, K., Manchon, D.: Two interacting Hopf algebras of trees. Adv. Appl. Math. 47(2), 282–308 (2011)

    Article  MathSciNet  Google Scholar 

  8. Chandra, A., Weber, H.: An analytic BPHZ theorem for regularity structures. arXiv:1612.08138 (2016)

    Google Scholar 

  9. Chapoton, F., Livernet, M.: Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not. 2001, 395–408 (2001)

    Article  MathSciNet  Google Scholar 

  10. Chartier, Ph., Hairer, E., Vilmart, G.: Numerical integrators based on modified differential equations. Math. Comput. 76, 1941–1953 (2007)

    Article  MathSciNet  Google Scholar 

  11. Connes, A., Kreimer, D.: Hopf algebras, renormalization and noncommutative geometry. Commun. Math. Phys. 199, 203–242 (1998)

    Article  MathSciNet  Google Scholar 

  12. Dür, A.: Möbius Functions, Incidence Algebras and Power Series Representations. Lecture Notes in Mathematics, vol. 1202. Springer, Berlin (1986)

    Google Scholar 

  13. Ebrahimi-Fard, K., Fauvet, F., Manchon, D.: A comodule-bialgebra structure for word-series substitution and mould composition. J. Algebra 489, 552–581 (2017)

    Article  MathSciNet  Google Scholar 

  14. Ecalle, J.: Les fonctions résurgentes, vol. 1. Publications Mathématiques d’Orsay (1981). Available at http://portail.mathdoc.fr/PMO/feuilleter.php?id=PMO_1981

  15. Ecalle, J.: Singularités non abordables par la géométrie. Ann. Inst. Fourier 42(1–2), 73–164 (1992)

    Article  MathSciNet  Google Scholar 

  16. Ecalle, J., Vallet, B.: Prenormalization, correction, and linearization of resonant vector fields or diffeomorphisms. Prepub. Math. Orsay 95–32, 90 (1995)

    Google Scholar 

  17. Ecalle, J., Vallet, B.: The arborification-coarborification transform: analytic, combinatorial, and algebraic aspects. Ann. Fac. Sci. Toulouse XIII(4), 575–657 (2004)

    Article  MathSciNet  Google Scholar 

  18. Fauvet, F., Foissy, L., Manchon, D.: The Hopf algebra of finite topologies and mould composition. Ann. Inst. Fourier. arXiv:1503.03820 (2015, to appear)

    Google Scholar 

  19. Fauvet, F., Foissy, L., Manchon, D.: Operads of finite posets. Electron. J. Comb. 25(1), 29 pp. (2018)

    Google Scholar 

  20. Fauvet, F., Menous, F.: Ecalle’s arborification-coarborification transforms and the Connes–Kreimer Hopf algebra. Ann. Sci. Éc. Norm. Sup. 50(1), 39–83 (2017)

    Article  MathSciNet  Google Scholar 

  21. Foissy, L.: Les algèbres de Hopf des arbres enracinés décorés I,II. Bull. Sci. Math. 126, 193–239, 249–288 (2002)

    Article  MathSciNet  Google Scholar 

  22. Foissy, L.: Algebraic structures associated to operads. arXiv:1702.05344 (2017)

    Google Scholar 

  23. Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)

    Article  MathSciNet  Google Scholar 

  24. Hairer, M.: Introduction to regularity structures. Braz. J. Probab. Stat. 29, 175–210 (2015)

    Article  MathSciNet  Google Scholar 

  25. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics, vol. 31. Springer, Berlin (2002)

    Google Scholar 

  26. Hoffman, M.E.: Quasi-shuffle products. J. Algebraic Combin. 11, 49–68 (2000)

    Article  MathSciNet  Google Scholar 

  27. Kassel, Chr.: Quantum Groups. Graduate Texts in Mathematics, vol. 155. Springer, New York (1995)

    Book  Google Scholar 

  28. Kreimer, D.: On the Hopf algebra structure of perturbative quantum field theories. Adv. Theor. Math. Phys. 2, 303–334 (1998)

    Article  MathSciNet  Google Scholar 

  29. Manchon, D.: On bialgebra and Hopf algebra of oriented graphs. Confluentes Math. 4(1), 1240003 (10 pp.) (2012)

    Article  MathSciNet  Google Scholar 

  30. Menous, F.: An example of local analytic q-difference equation: analytic classification. Ann. Fac. Sci. Toulouse XV(4), 773–814 (2006)

    Article  MathSciNet  Google Scholar 

  31. Molnar, R.K.: Semi-direct products of Hopf algebras. J. Algebra 45, 29–51 (1977)

    Article  MathSciNet  Google Scholar 

  32. Murua, A.: The Hopf algebra of rooted trees, free Lie algebras, and Lie series. Found. Comput. Math. 6, 387–426 (2006)

    Article  MathSciNet  Google Scholar 

  33. Murua, A., Sanz-Serna, J.-M.: Order conditions for numerical integrators obtained by composing simpler integrators. Philos. Trans. R. Soc. Lond. A 357, 1079–1100 (1999)

    Article  MathSciNet  Google Scholar 

  34. Murua, A., Sanz-Serna, J.-M.: Word series for dynamical systems and their numerical integrators. arXiv:1502.05528 [math.NA] (2015)

    Google Scholar 

  35. Murua, A., Sanz-Serna, J.-M.: Hopf algebra techniques to handle dynamical systems and numerical integrators. arXiv:1702.08354 [math.DS] (2017)

    Google Scholar 

Download references

Acknowledgements

I thank Kurusch Ebrahimi–Fard for his encouragements, as well as Yvain Bruned, Martin Hairer and Lorenzo Zambotti for introducing me to regularity structures. Special thanks to Yvain for illuminating discussions and for providing me the example in Sect. 9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Manchon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manchon, D. (2018). A Review on Comodule-Bialgebras. In: Celledoni, E., Di Nunno, G., Ebrahimi-Fard, K., Munthe-Kaas, H. (eds) Computation and Combinatorics in Dynamics, Stochastics and Control. Abelsymposium 2016. Abel Symposia, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-01593-0_20

Download citation

Publish with us

Policies and ethics