Skip to main content

Parabolic Anderson Model with Rough Dependence in Space

  • Conference paper
  • First Online:
Computation and Combinatorics in Dynamics, Stochastics and Control (Abelsymposium 2016)

Part of the book series: Abel Symposia ((ABEL,volume 13))

Included in the following conference series:

Abstract

This paper studies the one-dimensional parabolic Anderson model driven by a Gaussian noise which is white in time and has the covariance of a fractional Brownian motion with Hurst parameter \(H \in (\frac {1}{4}, \frac {1}{2})\) in the space variable. We derive the Wiener chaos expansion of the solution and a Feynman-Kac formula for the moments of the solution. These results allow us to establish sharp lower and upper asymptotic bounds for the nth moment of the solution.

Y. Hu is supported by an NSERC discovery grant. D. Nualart is supported by the NSF grant DMS1512891 and the ARO grant FED0070445. S. Tindel is supported by the NSF grant DMS1613163.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts, T., Khanin, K., Quastel, J.: The continuum directed random polymer. J. Stat. Phys. 154(1–2), 305–326 (2014).

    Article  MathSciNet  Google Scholar 

  2. Balan, R., Jolis, M., Quer-Sardanyons, L.: SPDEs with fractional noise in space with index H < 1∕2. Electron. J. Probab. 20(54), 36 (2015)

    MATH  Google Scholar 

  3. Bertini, L., Cancrini, N.: The stochastic heat equation: Feynman- Kac formula and intermittence. J. Stat. Phys. 78(5–6), 1377–1401 (1995)

    Article  MathSciNet  Google Scholar 

  4. Bezerra, S., Tindel, S., Viens, F.: Superdiffusivity for a Brownian polymer in a continuous Gaussian environment. Ann. Probab. 36(5), 1642–1675 (2008)

    Article  MathSciNet  Google Scholar 

  5. Chen, X.: Spatial asymptotics for the parabolic Anderson models with generalized time-space Gaussian noise. Ann. Probab. 44(2), 1535–1598 (2016)

    Article  MathSciNet  Google Scholar 

  6. Hairer, M.: Solving the KPZ equation. Ann. Math. 178(2), 559–664 (2013)

    Article  MathSciNet  Google Scholar 

  7. Hu, Y.: Analysis on Gaussian Space. World Scientific, Singapore (2017)

    Google Scholar 

  8. Hu, Y., Nualart, D.: Stochastic heat equation driven by fractional noise and local time. Probab. Theory Related Fields 143(1–2), 285–328 (2009)

    Article  MathSciNet  Google Scholar 

  9. Hu, Y., Huang, J., LĂȘ, K., Nualart, D., Tindel, S.: Stochastic heat equation with rough dependence in space. Ann. Probab. 45, 4561–4616 (2017)

    Article  MathSciNet  Google Scholar 

  10. Hu, Y., Huang, J., Nualart, D., Tindel, S.: Stochastic heat equations with general multiplicative Gaussian noises: Hölder continuity and intermittency. Electron. J. Probab. 20(55), 50 (2015)

    MATH  Google Scholar 

  11. Hu, Y., Nualart, D., Song, J.: Feynman-Kac formula for heat equation driven by fractional white noise. Ann. Probab. 30, 291–326 (2011)

    Article  MathSciNet  Google Scholar 

  12. Huang, J., LĂȘ, K., Nualart, D.: Large time asymptotics for the parabolic Anderson model driven by spatially correlated noise. Ann. Inst. H. PoincarĂ© 53, 1305–1340 (2017)

    Article  MathSciNet  Google Scholar 

  13. Khoshnevisan, D.: Analysis of Stochastic Partial Differential Equations. CBMS Regional Conference Series in Mathematics, vol. 119, pp. viii+116. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (2014)

    Google Scholar 

  14. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V., Amsterdam (2006)

    Chapter  Google Scholar 

  15. Li, W.V., Shao, Q.-M.: Gaussian processes: inequalities, small ball probabilities and applications. In: Stochastic Processes: Theory Methods, Handbook of Statistics, vol. 19. North-Holland, Amsterdam (2001)

    Google Scholar 

  16. Nualart, D.: The Malliavin Calculus and Related Topics. 2nd edn. Probability and its Applications (New York), pp. xiv+382. Springer, Berlin (2006)

    Google Scholar 

  17. Pipiras, V., Taqqu, M.: Integration questions related to fractional Brownian motion. Probab. Theory Related Fields 118(2), 251–291 (2000)

    Article  MathSciNet  Google Scholar 

  18. Strichartz, R.S.: A guide to distribution theory and Fourier transforms. World Scientific Publishing Co., Inc., River Edge (2003)

    Book  Google Scholar 

Download references

Acknowledgements

We thank the referees for their useful comments which improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaozhong Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, Y., Huang, J., LĂȘ, K., Nualart, D., Tindel, S. (2018). Parabolic Anderson Model with Rough Dependence in Space. In: Celledoni, E., Di Nunno, G., Ebrahimi-Fard, K., Munthe-Kaas, H. (eds) Computation and Combinatorics in Dynamics, Stochastics and Control. Abelsymposium 2016. Abel Symposia, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-01593-0_17

Download citation

Publish with us

Policies and ethics