Skip to main content

Fast Bayesian Classification for Disease Mapping and the Detection of Disease Clusters

  • Conference paper
  • First Online:
Quantitative Methods in Environmental and Climate Research

Abstract

We propose a framework fast method for detecting clusters of disease based on generalized spatial scan statistics set in the context of Bayesian Hierarchical Models. The approach models spatio-temporal clusters of disease as dummy variables as part of a Generalized Linear Mixed Model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrams AM, Kulldorff M, Kleinman K (2006). Empirical/asymptotic p-values for monte carlo-based hypothesis testing: an application to cluster detection using the scan statistic. Adv Dis Surveill 1(1):1

    Google Scholar 

  2. Ahrens C, Altman N, Casella G, Eaton M, Hwang JTG, Staudenmayer J, Stefanescu C (1999) Leukemia clusters in upstate New York: how adding covariates changes the story. Environmetrics 12(7):659–672

    Article  Google Scholar 

  3. Anderson C, Lee D, Dean N (2014) Identifying clusters in Bayesian disease mapping. Biostatistics 15(3):457–469

    Article  Google Scholar 

  4. Anderson C, Lee D, Dean N (2017) Spatial clustering of average risks and risk trends in Bayesian disease mapping. Biometrical J 59(1):41–56

    Article  MathSciNet  Google Scholar 

  5. Besag J, York J, Mollie A (1991) Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 43(1):1–59

    Article  MathSciNet  Google Scholar 

  6. Bilancia M, Demarinis G (2014) Bayesian scanning of spatial disease rates with integrated nested laplace approximation (INLA). Stat Methods Appl 23(1):71–94

    Article  MathSciNet  Google Scholar 

  7. Broman KW, Speed TP (2002) A model selection approach for the identification of quantitative trait loci in experimental crosses. J R Stat Soc Ser B 64(4):641–656

    Article  MathSciNet  Google Scholar 

  8. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical Information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  9. Cançado A, da Silva C, da Silva M (2014) A spatial scan statistic for zero-inflated poisson process. Environ Ecol Stat 21:627–650

    Article  MathSciNet  Google Scholar 

  10. Ferrándiz J, Abellán JJ, Gómez-Rubio V, López-Quílez A, Sanmartín P, Abellán C, Martínez-Beneito MA, Melchor I, Vanaclocha H, Zurriaga O, Ballester F, Gil JM, Pérez-Hoyos S, Ocaña R (2004) Spatial analysis of the relationship between cardiovascular mortality and drinking water hardness. Environ Health Perspect 112(9):1037–1044

    Article  Google Scholar 

  11. Ferreira J, Denison DGT, Holmes CC (2002) Partition modelling. In: Lawson AB, Denison DGT (eds) Spatial cluster modelling, Chap 7. Chapman & Hall/CRC, Boca Raton, pp 125–145

    Google Scholar 

  12. Gangnon RE (2006) Impact of prior choice on local bayes factors for cluster detection. Stat Med 25:883–895

    Article  MathSciNet  Google Scholar 

  13. Gangnon RE, Clayton MK (2000) Bayesian detection and modelling of spatial disease clustering. Biometrics 56:922–935

    Article  Google Scholar 

  14. Gangnon RE, Clayton MK (2003) A hierarchical model for spatially clustered disease rates. Stat Med 22:3213–3228

    Article  Google Scholar 

  15. Gilks W, Richardson S, Spiegelhalter D (1996) Markov chain Monte Carlo in practice. Chapman & Hall, Boca Raton, FL

    MATH  Google Scholar 

  16. Gómez-Rubio V, López-Quílez A (2010) Statistical methods for the geographical analysis of rare diseases. Adv Exp Med Biol 686:151–171

    Article  Google Scholar 

  17. Gómez-Rubio V, Ferrándiz-Ferragud J, López-Quílez A (2005) Detecting clusters of disease with R. J Geogr Syst 7(2):189–206

    Article  Google Scholar 

  18. Gomez-Rubio V, Serrano PEM, Rowlingson B (2018) DClusterm: model-based detection of disease clusters. R package version 0.2

    Google Scholar 

  19. Jung I (2009) A generalized linear models approach to spatial scan statistics for covariate adjustment. Stat Med 28(7):1131–1143

    Article  MathSciNet  Google Scholar 

  20. Knorr-Held L, Rasser G (2000) Bayesian detection of clusters and discontinuities in disease maps. Biometrics 56:13–21

    Article  Google Scholar 

  21. Kulldorff M (1997) A spatial scan statistic. Commun Stat Theory Methods 26(6):1481–1496

    Article  MathSciNet  Google Scholar 

  22. Kulldorff M (2006) Tests of spatial randomness adjusted for an inhomogeneity: a general framework. J Am Stat Assoc 101(475):1289–1305

    Article  MathSciNet  Google Scholar 

  23. Kulldorff M, Athas WF, Feurer EJ, Miller BA, Key CR (1998) Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico. Am J Public Health 88:1377–1380

    Article  Google Scholar 

  24. Lawson A (ed) (2005). Statistical methods in medical research special issue on disease mapping, vol 14(1). SAGE Publications, Thousand Oaks

    Google Scholar 

  25. Lawson AB, Gangnon RE, Wartenberg D (eds) (2006). Statistics in medicine. Special issue: developments in disease cluster detection, vol 25(5). Wiley, New York

    Google Scholar 

  26. Loh JM, Zhou Z (2007) Accounting for spatial correlation in the scan statistic. Ann Appl Stat 1:560–584

    Article  MathSciNet  Google Scholar 

  27. McCullagh P, Nelder J (1989) Generalized linear models, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  28. McCullogh CE, Searle SR (2001) Generalized, linear, and mixed models. Wiley, New York

    Google Scholar 

  29. Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc Ser A (General) 135(3):370–384

    Article  Google Scholar 

  30. Openshaw S, Charlton M, Wymer C, Craft AW (1987) A Mark I geographical analysis machine for the automated analysis of point datasets. Int J Geogr Inf Syst 1:335–358

    Article  Google Scholar 

  31. Prates MO, Kulldorff M, Assunção RM (2014) Relative risk estimates from spatial and space-time statistics: are they biased? Stat Med 33:2634–2644

    Article  MathSciNet  Google Scholar 

  32. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  33. Rothman KJ (1990) A sobering start for the cluster busters’ conference. Am J Epidemiol Suppl. No. 1(132):S6–S13

    Google Scholar 

  34. Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent gaussian models by using integrated nested laplace approximation (with discussion). J R Stat Soc Ser B 71(2):319–392

    Article  MathSciNet  Google Scholar 

  35. Spiegelhalter DJ, Best NG, Carlin BP, Van der Linde A (2002) Bayesian measures of model complexity and fit (with discussion). J R Stat Soc Ser B 64(4):583–616

    Article  MathSciNet  Google Scholar 

  36. Ugarte MD, Ibáñez B, Militino AF (2004) Testing for poisson zero inflation in disease mapping. Biom J 46(5):526–539

    Article  MathSciNet  Google Scholar 

  37. Ugarte MD, Ibáñez B, Militino AF (2006) Modelling risks in disease mapping. Stat Methods Med Res 15:21–35

    Article  MathSciNet  Google Scholar 

  38. Vaida F, Blanchard S (2005) Conditional Akaike information for mixed-effects models. Biometrika 92(2):351–370

    Article  MathSciNet  Google Scholar 

  39. Wakefield J, Kim A (2013) A Bayesian model for cluster detection. Biostatistics 14:752–765

    Article  Google Scholar 

  40. Walker SF, Bosch J, Gomez V, Garner TWJ, Cunningham AA, Schmeller DS, Ninyerola M, Henk DA, Ginestet C, Arthur C-P, Fisher MC (2010) Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in iberia. Ecol Lett 13:372–382

    Article  Google Scholar 

  41. Waller LA, Gotway CA (2004) Applied spatial statistics for public health data. Wiley, Hoboken, NJ

    Book  Google Scholar 

  42. Waller L, Turnbull B, Clark L, Nasca P (1992) Chronic disease surveillance and testing of clustering of disease and exposure: application to leukemia incidence in TCE-contaminated dumpsites in upstate New York. Environmetrics 3:281–300

    Article  Google Scholar 

  43. Zhang T, Lin G (2009) Cluster detection based on spatial associations and iterated residuals in generalized linear mixed models. Biometrics 65:353–360

    Article  MathSciNet  Google Scholar 

  44. Zhang T, Lin G (2009) Spatial scan statistics in loglinear models. Comput Stat Data Anal 53:2851–2858

    Article  MathSciNet  Google Scholar 

  45. Zhang Z, Assunção R, Kulldorff M (2010) Spatial scan statistics adjusted for multiple clusters. J Probab Stat 2010:1–11

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gómez-Rubio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gómez-Rubio, V., Molitor, J., Moraga, P. (2018). Fast Bayesian Classification for Disease Mapping and the Detection of Disease Clusters. In: Cameletti, M., Finazzi, F. (eds) Quantitative Methods in Environmental and Climate Research. Springer, Cham. https://doi.org/10.1007/978-3-030-01584-8_1

Download citation

Publish with us

Policies and ethics