Skip to main content

Mass-Spring Damper Array as a Mechanical Medium for Computation

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Abstract

Recently, it has been reported that the dynamics of mechanical structures can be used as a computational resource—also referred to as morphological computation. In particular soft materials have been shown to have the potential to be used for time series forecasting. Although most soft materials can be modeled by mass-spring systems, a limited number of researches has been performed on the computational capabilities of such systems. In this paper, we propose an array of masses linked in a grid-like structure by spring-damper connections to investigate systematically the influence of structural (size) and dynamic (stiffness, damping) parameters on the computational capabilities for time series forecasting. In addition, such a structure gives us a good approximation of two-dimensional elastic media, e.g., a rubber sheet, and therefore a direct pathway to potentially implement results in a real system. In particular, we compared the mass-spring array to echo state networks, which are standard machine learning techniques for this kind of problems and are also closely related to the underlying theoretical models applied when exploiting mechanical structures for computation. Our results suggest a clear connection of morphological features to computational capabilities.

Supported by JST, PRESTO Grant Number JPMJPR15E7 and JPMJPR16EC, Japan and by the Leverhulme Trust Research Project Grant RPG-2016-345.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The spectral radius of the matrix is the largest absolute value of the eigenvalues of the matrix. The performance of ESNs strongly depends on if the network has the so-called echo state property, and it is known that the small spectral radius indicates this property. See [7] for detail.

References

  1. Atiya, A.F., Parlos, A.G.: New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11(3), 697–709 (2000)

    Article  Google Scholar 

  2. Eder, M., Hisch, F., Hauser, H.: Morphological computation-based control of a modular, pneumatically driven, soft robotic arm. Adv. Robot. 32(7), 375–385 (2018). https://doi.org/10.1080/01691864.2017.1402703

    Article  Google Scholar 

  3. Fernando, C., Sojakka, S.: Pattern recognition in a bucket. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 588–597. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39432-7_63

    Chapter  Google Scholar 

  4. Hauser, H., Füchslin, R., Nakajima, K.: Morphological computation—the physical body as a computational resource. In: Hauser, H.; Füchslin, R.M., Pfeifer, R. (eds.) Opinions and Outlooks on Morphological Computation, Chap. 20, pp. 226–244 (2014). ISBN 978-3-033-04515-6

    Google Scholar 

  5. Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: Towards a theoretical foundation for morphological computation with compliant bodies. Biol. Cybern. 105(5), 355–370 (2011)

    Article  MathSciNet  Google Scholar 

  6. Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: The role of feedback in morphological computation with compliant bodies. Biol. Cybern. 106(10), 595–613 (2012). https://doi.org/10.1007/s00422-012-0516-4

    Article  MathSciNet  MATH  Google Scholar 

  7. Jaeger, H.: Adaptive nonlinear system identification with echo state networks. In: Advances in Neural Information Processing Systems, pp. 609–616 (2003)

    Google Scholar 

  8. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)

    Article  Google Scholar 

  9. Jaeger, H., Lukoševičius, M., Popovici, D., Siewert, U.: Optimization and applications of echo state networks with leaky-integrator neurons. Neural Netw. 20(3), 335–352 (2007)

    Article  Google Scholar 

  10. Kang, R., et al.: Dynamic model of a hyper-redundant, octopus-like manipulator for underwater applications. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4054–4059 (2011). https://doi.org/10.1109/IROS.2011.6094468

  11. Laschi, C., Mazzolai, B., Cianchetti, M.: Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 1(1), eaah3690 (2016)

    Article  Google Scholar 

  12. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

    Article  Google Scholar 

  13. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

    Article  Google Scholar 

  14. Nakajima, K., Li, T., Hauser, H., Pfeifer, R.: Exploiting short-term memory in soft body dynamics as a computational resource. J. R. Soc. Interface 11(100) (2014)

    Article  Google Scholar 

  15. Nakajima, K., Hauser, H., Kang, R., Guglielmino, E., Caldwell, D., Pfeifer, R.: A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm. Front. Comput. Neurosci. 7, 91 (2013). https://doi.org/10.3389/fncom.2013.00091

    Article  Google Scholar 

  16. Nakajima, K., Hauser, H., Li, T., Pfeifer, R.: Information processing via physical soft body. Sci. Rep.5 (2015)

    Google Scholar 

  17. Nakajima, K., Hauser, H., Li, T., Pfeifer, R.: Exploiting the dynamics of soft materials for machine learning. Soft Robot. 5(3), 339–347 (2018)

    Article  Google Scholar 

  18. Paquot, Y., et al.: Optoelectronic reservoir computing. Sci. Rep. 2, 287 (2012)

    Article  Google Scholar 

  19. Paul, C., Valero-Cuevas, F.J., Lipson, H.: Design and control of tensegrity robots for locomotion. IEEE Trans. Robot. 22(5), 944–957 (2006)

    Article  Google Scholar 

  20. Pfeifer, R., Gómez, G.: Morphological computation – connecting brain, body, and environment. In: Sendhoff, B., Körner, E., Sporns, O., Ritter, H., Doya, K. (eds.) Creating Brain-Like Intelligence. LNCS (LNAI), vol. 5436, pp. 66–83. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00616-6_5

    Chapter  Google Scholar 

  21. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)

    Article  Google Scholar 

  22. Urbain, G., Degrave, J., Carette, B., Dambre, J., Wyffels, F.: Morphological properties of mass-spring networks for optimal locomotion learning. Front. Neurorobotics 11, 16 (2017). https://doi.org/10.3389/fnbot.2017.00016

    Article  Google Scholar 

  23. Verstraeten, D., Schrauwen, B., d’ Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Netw. 20(3), 391–403 (2007)

    Article  Google Scholar 

  24. Yekutieli, Y., Sagiv-Zohar, R., Aharonov, R., Engel, Y., Hochner, B., Flash, T.: Dynamic model of the octopus arm.I. biomechanics of the octopus reaching movement. J. Neurophysiol. 94, 1443–1458 (2005)

    Article  Google Scholar 

  25. Yekutieli, Y., Sagiv-Zohar, R., Aharonov, R., Engel, Y., Hochner, B., Flash, T.: Dynamic model of the octopus arm.II. control of reaching movements. J. Neurophysiol. 94, 1459–1468 (2005)

    Article  Google Scholar 

  26. Zhao, Q., Nakajima, K., Sumioka, H., Hauser, H., Pfeifer, R.: Spine dynamics as a computational resource in spine-driven quadruped locomotion. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013), pp. 1445–1451. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Yamanaka .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 34356 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yamanaka, Y., Yaguchi, T., Nakajima, K., Hauser, H. (2018). Mass-Spring Damper Array as a Mechanical Medium for Computation. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-030-01424-7_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01424-7_76

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01423-0

  • Online ISBN: 978-3-030-01424-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics