Skip to main content

Concept Study for Vehicle Self-Localization Using Neural Networks for Detection of Pole-Like Landmarks

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 867))

Abstract

This paper discusses and showcases a software framework for the self-localization of autonomous vehicles in an urban environment. The general concept of this framework is based on the semantic detection and observation of objects in the surrounding environment. For the object detection three different perception approaches are compared; LiDAR based, stereo camera based and mono camera based using a neural net. The investigated objects all share the same geometrical shape; they are vertical with a high aspect ratio. To compute the pose of the vehicle an Adaptive Monte-Carlo Algorithm has been implemented. Hence it is necessary to create a high-precision digital map this is done with a dense map, the detected objects and the LiDAR point cloud. Comparison with an earlier paper have shown that this approach keeps the global positioning accuracy around 0.50 m and leads to more robust results in highly dynamic scenarios where a small amount of objects can be detected.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking. IEEE Trans. Sig. Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  2. Bais, A., Sablatnig, R., Gu, J.: Single landmark based self-localization of mobile robots. In: The 3rd Canadian Conference on Computer and Robot Vision, p. 67. IEEE, Piscataway (2006)

    Google Scholar 

  3. Balali, V., Golparvar-Fard, M.: Recognition and 3D localization of traffic signs via image-based point cloud models. In: Ponticelli, S., O’Brien, W.J. (eds.) Computing in Civil Engineering 2015, pp. 206–214. American Society of Civil Engineers, Reston (2015)

    Google Scholar 

  4. Bappy, J.H., Roy-Chowdhury, A.K.: CNN based region proposals for efficient object detection. In: 2016 IEEE International Conference on Image Processing, pp. 3658–3662. IEEE, Piscataway (2016)

    Google Scholar 

  5. Bazin, J., Laffont, P., Kweon, I., Demonceaux, C., Vasseur, P.: An original approach for automatic plane extraction by omnidirectional vision. In: The IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 752–758. IEEE, Piscataway (2010)

    Google Scholar 

  6. Bernay-Angeletti, C., Chabot, F., Aynaud, C., Aufrere, R., Chapuis, R.: A top-down perception approach for vehicle pose estimation. In: 2015 IEEE International Conference on Robotics and Biomimetics, pp. 2240–2245. IEEE, Piscataway (2015)

    Google Scholar 

  7. Biber, P., Strasser, W.: The normal distributions transform: a new approach to laser scan matching. In: 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2743–2748. IEEE, Piscataway (2003)

    Google Scholar 

  8. Bora, D.J., Gupta, A.K., Khan, F.A.: Comparing the performance of L*A*B* and HSV color spaces with respect to color image segmentation, 04 June 2015. http://arxiv.org/pdf/1506.01472

  9. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding, 07 April 2016. http://arxiv.org/pdf/1604.01685

  10. Dailey, M.N., Parnichkun, M.: Landmark-based simultaneous localization and mapping with stereo vision (2005)

    Google Scholar 

  11. Denzler, J., Notni, G., Süße, H.: Pattern Recognition, vol. 5748. Springer, Heidelberg (2009)

    Book  Google Scholar 

  12. Everingham, M., van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  13. Feng, C., Taguchi, Y., Kamat, V.R.: Fast plane extraction in organized point clouds using agglomerative hierarchical clustering. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 6218–6225. IEEE, Piscataway (2014)

    Google Scholar 

  14. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  15. Girshick, R.: Fast R-CNN (2015). http://arxiv.org/pdf/1504.08083

  16. Green, W.R., Grobler, H.: Normal distribution transform graph-based point cloud segmentation. In: Proceedings of the 2015 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), pp. 54–59. IEEE, Piscataway (2015)

    Google Scholar 

  17. He, Z., Wang, Y., Yu, H.: Feature-to-feature based laser scan matching in polar coordinates with application to pallet recognition. Procedia Eng. 15, 4800–4804 (2011)

    Article  Google Scholar 

  18. Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Patt. Anal. Mach. Intell. 30(2), 328–341 (2008)

    Article  Google Scholar 

  19. Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., Murphy, K.: Speed/accuracy trade-offs for modern convolutional object detectors (2016). http://arxiv.org/pdf/1611.10012

  20. Jang, C., Kim, Y.K.: A feasibility study of vehicle pose estimation using road sign information. In: ICCAS 2016, pp. 397–401. IEEE, Piscataway (2016)

    Google Scholar 

  21. Jayatilleke, L., Zhang, N.: Landmark-based localization for unmanned aerial vehicles. In: 2013 IEEE International Systems Conference (SysCon 2013), pp. 448–451. IEEE, Piscataway (2013)

    Google Scholar 

  22. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: SSD: single shot multibox detector (2015). http://arxiv.org/pdf/1512.02325

  23. Macukow, B.: Neural networks - state of art, brief history, basic models and architecture. In: Saeed, K., Homenda, W. (eds.) Computer Information Systems and Industrial Management. Lecture Notes in Computer Science, pp. 3–14. Springer, Cham (2016)

    Chapter  Google Scholar 

  24. Pandey, G., McBride, J.R., Eustice, R.M.: Ford campus vision and lidar data set. Int. J. Robot. Res. 30(13), 1543–1552 (2011)

    Article  Google Scholar 

  25. Rademakers, E., de Bakker, P., Tiberius, C., Janssen, K., Kleihorst, R., Ghouti, N.E.: Obtaining real-time sub-meter accuracy using a low cost GNSS device. In: 2016 European Navigation Conference (ENC), pp. 1–8. IEEE, Piscataway (2016)

    Google Scholar 

  26. Rapp, M., Barjenbruch, M., Hahn, M., Dickmann, J., Dietmayer, K.: Clustering improved grid map registration using the normal distribution transform. In: 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 249–254. IEEE, Piscataway (2015)

    Google Scholar 

  27. Reddy, B.S., Chatterji, B.N.: An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)

    Article  Google Scholar 

  28. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger (2016). http://arxiv.org/pdf/1612.08242

  29. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 91–99. Curran Associates, Inc (2015). http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf

  30. Rohde, J., Jatzkowski, I., Mielenz, H., Zöllner, J.M.: Vehicle pose estimation in cluttered urban environments using multilayer adaptive monte carlo localization. In: 2016 19th International Conference on Information Fusion (FUSION), pp. 1774–1779 (2016)

    Google Scholar 

  31. Rossmann, J., Sondermann, B., Emde, M.: Virtual testbeds for planetary exploration: the self-localization aspect. 11th Symposium on Advanced Space Technologies in Robotics and Automation. ASTRA, pp. 1–8. ESA/ESTEC, Noordwijk (2011)

    Google Scholar 

  32. Schindler, A.: Vehicle self-localization with high-precision digital maps. In: 2013 IEEE Intelligent Vehicles Symposium workshops (IV workshops), pp. 134–139. IEEE, Piscataway (2013)

    Google Scholar 

  33. Sefati, M., Daum, M., Sondermann, B., Kreiskother, K.D., Kampker, A.: Improving vehicle localization using semantic and pole-like landmarks. In: 28th IEEE Intelligent Vehicles Symposium, pp. 13–19. IEEE, Piscataway (2017)

    Google Scholar 

  34. Shu, L., Xu, H., Huang, M.: High-speed and accurate laser scan matching using classified features. In: Ben-Tzvi, P. (ed.) 2013 IEEE International Symposium on Robotic and Sensors Environments (ROSE), pp. 61–66. IEEE, Piscataway (2013)

    Google Scholar 

  35. Sindagi, V.A., Patel, V.M.: A survey of recent advances in CNN-based single image crowd counting and density estimation. Patt. Recogn. Lett. 107, 3–6 (2018). https://doi.org/10.1016/j.patrec.2017.07.007

    Article  Google Scholar 

  36. Spangenberg, R., Goehring, D., Rojas, R.: Pole-based localization for autonomous vehicles in urban scenarios. In: IROS 2016, pp. 2161–2166. IEEE, Piscataway (2016)

    Google Scholar 

  37. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. Intelligent Robotics and Autonomous Agents. MIT Press, Cambridge (2010). Mass. [u.a.], [nachdr.] edn

    MATH  Google Scholar 

  38. Xie, P., Petovello, M.G.: Measuring GNSS multipath distributions in urban canyon environments. IEEE Trans. Instrum. Measur. 64(2), 366–377 (2015)

    Article  Google Scholar 

  39. Zhang, H., Zhang, L., Dai, J.: Landmark-based localization for indoor mobile robots with stereo vision. In: 2012 Second International Conference on Intelligent System Design and Engineering Application (ISDEA), pp. 700–702. IEEE, Piscataway (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Hatzenbuehler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kampker, A., Hatzenbuehler, J., Klein, L., Sefati, M., Kreiskoether, K.D., Gert, D. (2019). Concept Study for Vehicle Self-Localization Using Neural Networks for Detection of Pole-Like Landmarks. In: Strand, M., Dillmann, R., Menegatti, E., Ghidoni, S. (eds) Intelligent Autonomous Systems 15. IAS 2018. Advances in Intelligent Systems and Computing, vol 867. Springer, Cham. https://doi.org/10.1007/978-3-030-01370-7_54

Download citation

Publish with us

Policies and ethics