Skip to main content

Aggregating Models for Anomaly Detection in Space Systems: Results from the FCTMAS Study

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 867))

Abstract

The Flight Control Team Multi-Agent System (FCTMAS) study, funded by the European Space Agency (ESA), has investigated the use of multiagent systems in supporting flight control teams in routine operations. One of the scientific challenges of the FCTMAS study has been the detection of anomalies relative to a space system only on the basis of identified deviations from the nominal trends of single measurable variables. In this paper, we discuss how we addressed this challenge by looking for the best structure that aggregates a given set of models, each one returning the anomaly probability of a single measurable variable, under the assumption that there is no a priori knowledge about the structure of the space system nor about the relationships between the variables. Experiments are conducted on data of the Cryosat-2 satellite and their results are eventually summarized as a set of guidelines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amigoni, F., Beda, A., Gatti, N.: Multiagent systems for cardiac pacing simulation and control. AI Commun. 18(3), 217–228 (2005)

    MathSciNet  Google Scholar 

  2. Amigoni, F., Beda, A., Gatti, N.: Combining rate-adaptive cardiac pacing algorithms via multiagent negotiation. IEEE Trans. Inf. Technol. B 10(1), 11–18 (2006)

    Article  Google Scholar 

  3. Amigoni, F., Brambilla, A., Lavagna, M., Blake, R., le Duc, I., Page, J., Page, O., de la Rosa Steinz, S., Steel, R., Wijnands, Q.: Agent technologies for space applications: the DAFA experience. In: Proceedings of IAT, pp. 483–489 (2010)

    Google Scholar 

  4. Amigoni, F., Gatti, N.: A formal framework for connective stability of highly decentralized cooperative negotiations. Auton. Agent Multi Agent Syst. 15(3), 253–279 (2007)

    Article  Google Scholar 

  5. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-agent Systems with JADE. Wiley, Hoboken (2007)

    Book  Google Scholar 

  6. Cayrac, D., Dubois, D., Prade, H.: Handling uncertainty with possibility theory and fuzzy sets in a satellite fault diagnosis application. IEEE Trans. Fuzzy Syst. 4(3), 251–269 (1996)

    Article  Google Scholar 

  7. Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G., Castano, R., Davies, A., Lee, R., Mandl, D., Frye, S., Trout, B., Hengemihle, J., D’Agostino, J., Shulman, S., Ungar, S., Brakke, T., Boyer, D., Gaasbeck, J.V., Greeley, R., Doggett, T., Baker, V., Dohm, J., Ip, F.: The EO-1 autonomous science agent. In: Proceedings AAMAS, pp. 420–427 (2004)

    Google Scholar 

  8. Codetta-Raiteri, D., Portinale, L., Guiotto, A., Yushstein, Y.: Evaluation of anomaly and failure scenarios involving an exploration rover: a Bayesian network approach. In: Proceedings of iSAIRAS (2012)

    Google Scholar 

  9. Daly, K., Gai, E., Harrison, J.: Generalized likelihood test for FDI in redundant sensor configurations. J. Guid. Control Dyn. 2(1), 9–17 (1979)

    Article  Google Scholar 

  10. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  11. Holsti, N., Paakko, M.: Towards advanced FDIR components. In: Proceedings of DASIA (2001)

    Google Scholar 

  12. Koller, D., Friedman, N.: Probabilistic Graphical Models. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  13. Lavagna, M., Sangiovanni, G., Da Costa, A.: Modelization, failures identification and high-level recovery in fast varying non-linear dynamical systems for space autonomy. In: Proceedings of DCSSS, pp. 451–550 (2004)

    Google Scholar 

  14. Massioni, P., Sangiovanni, G., Lavagna, M.: Innovative software for autonomous fault detection and diagnosis on space systems. In: Proceedings of ASTRA (2006)

    Google Scholar 

  15. Muscettola, N., Dorais, G., Fry, C., Levinson, R., Plaunt, C.: IDEA: planning at the core of autonomous reactive agents. In: Proceedings of IWPSS (2002)

    Google Scholar 

  16. Muscettola, N., Nayak, P., Pell, B., Williams, B.: Remote agent: to boldly go where no AI system has gone before. Artif. Intell. 103, 5–47 (1998)

    Article  Google Scholar 

  17. Neerincx, M.: Situated cognitive engineering for crew support in space. Pers. Ubiquit. Comput. 15(5), 445–456 (2011)

    Article  Google Scholar 

  18. Smith, E., Korsmeyer, D.: Intelligent systems technologies for human space exploration mission operations. In: Proceedings of SMC-IT, pp. 169–176 (2011)

    Google Scholar 

  19. Sneha, S., Varshney, U.: Enabling ubiquitous patient monitoring: model, decision protocols, opportunities and challenges. Decision Support Syst. 46(3), 606–619 (2009)

    Article  Google Scholar 

  20. Ulerich, N., Powers, G.: On-line hazard aversion and fault diagnosis in chemical processes: the digraph+ fault-tree method. IEEE Trans. Reliab. 37(2), 171–177 (1988)

    Article  Google Scholar 

  21. Vallejo, D., Albusac, J., Castro-Schez, J., Glez-Morcillo, C., Jimenez, L.: A multi-agent architecture for supporting distributed normality-based intelligent surveillance. Eng. Appl. Artif. Intel. 24(2), 325–340 (2011)

    Article  Google Scholar 

  22. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.: A review of process fault detection and diagnosis: part II: qualitative models and search strategies. Comput. Chem. Eng. 27(3), 313–326 (2003)

    Article  Google Scholar 

  23. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S., Yin, K.: A review of process fault detection and diagnosis: part III: process history based methods. Comput. Chem. Eng. 27(3), 327–346 (2003)

    Article  Google Scholar 

  24. Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.: A review of process fault detection and diagnosis: part I: quantitative model-based methods. Comput. Chem. Eng. 27(3), 293–311 (2003)

    Article  Google Scholar 

  25. Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., Das, H.: The CLARAty architecture for robotic autonomy. In: Proceedings of IEEE Aerospace Conference, pp. 121–132 (2001)

    Google Scholar 

  26. Yin, S., Ding, S., Xie, X., Luo, H.: A review on basic data-driven approaches for industrial process monitoring. IEEE Trans. Ind. Electron. 61(11), 6418–6428 (2014)

    Article  Google Scholar 

  27. Zaher, A., McArthur, S., Infield, D., Patel, Y.: Online wind turbine fault detection through automated SCADA data analysis. Wind Energy 12(6), 574–593 (2009)

    Article  Google Scholar 

Download references

Acknowledgment

The authors kindly acknowledge the contributions of Matteo Gallo and Matteo Garza to the development of the MCS Subsystem described in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Amigoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amigoni, F., Ferrari Dacrema, M., Donati, A., Laroque, C., Lavagna, M., Riva, A. (2019). Aggregating Models for Anomaly Detection in Space Systems: Results from the FCTMAS Study. In: Strand, M., Dillmann, R., Menegatti, E., Ghidoni, S. (eds) Intelligent Autonomous Systems 15. IAS 2018. Advances in Intelligent Systems and Computing, vol 867. Springer, Cham. https://doi.org/10.1007/978-3-030-01370-7_12

Download citation

Publish with us

Policies and ethics