Skip to main content

Prediction of FFR from IVUS Images Using Machine Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11043))

Abstract

We present a machine learning approach for predicting fractional flow reserve (FFR) from intravscular ultrasound images (IVUS) in coronary arteries. IVUS images and FFR measurements were collected from 1744 patients and 1447 lumen and plaque segmentation masks were generated from 1447 IVUS images using an automatic segmentation model trained on separate 70 IVUS images and minor manual corrections. Using total 114 features from the masks and general patient informarion, we trained random forest (RF), extreme gradient boost (XGBoost) and artificial neural network (ANN) models for a binary classification of FFR-80 threshold (FFR < 0.8 v.s. FFR \(\ge \) 0.8) for comparison. The ensembled XGBoost models evaluated in 290 unseen cases achieved 81% accuracy and 70% recall.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Young, D.F., Cholvin, N.R., Kirkeeide, R.L., Roth, A.C.: Hemodynamics of arterial stenoses at elevated flow rates. Circ. Res. 41, 99–107 (1977)

    Article  Google Scholar 

  2. Pijls, N.H., van Son, J.A., Kirkeeide, R.L., De Bruyne, B., Gould, K.L.: Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 87, 1354–1367 (1993)

    Article  Google Scholar 

  3. Pijls, N.H., et al.: Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N. Engl. J. Med. 334, 1703–1708 (1996)

    Article  Google Scholar 

  4. Tonino, P.A.: Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N. Engl. J. Med. 360, 213–224 (2009)

    Article  Google Scholar 

  5. De Bruyne, B., Pijls, N.H., Kalesan, B., Barbato, E., Tonino, P.A., Piroth, Z.: Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N. Engl. J. Med. 367, 991–1001 (2012)

    Article  Google Scholar 

  6. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  7. Shen, D., Wu, G., Suk, H.-I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  8. Lee, J.-G., et al.: Deep learning in medical imaging: general overview. Korean J. Radiol. 18, 570–584 (2017)

    Article  Google Scholar 

  9. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016 , pp. 785–794 (2016)

    Google Scholar 

  10. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Statist. 29, 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

  11. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  12. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  14. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

Download references

Acknowledgement

This study was supported by grants from the Korea Healthcare Technology R&D Project, Ministry for Health & Welfare Affairs, Republic of Korea (HI15C1790 and HI17C1080); the Ministry of Science and ICT (NRF-2017R1A2B4005886); and the Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea (2017-0745).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Jin Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, G. et al. (2018). Prediction of FFR from IVUS Images Using Machine Learning. In: Stoyanov, D., et al. Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. LABELS CVII STENT 2018 2018 2018. Lecture Notes in Computer Science(), vol 11043. Springer, Cham. https://doi.org/10.1007/978-3-030-01364-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01364-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01363-9

  • Online ISBN: 978-3-030-01364-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics