Skip to main content

An Efficient and Comprehensive Labeling Tool for Large-Scale Annotation of Fundus Images

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11043))

Abstract

Computerized labeling tools are often used to systematically record the assessment for fundus images. Carefully designed labeling tools not only save time and enable comprehensive and thorough assessment at clinics, but also economize large-scale data collection processes for the development of automatic algorithms. To realize efficient and thorough fundus assessment, we developed a new labeling tool with novel schemes - stepwise labeling and regional encoding. We have used our tool in a large-scale data annotation project in which 318,376 annotations for 109,885 fundus images were gathered with a total duration of 421 h. We believe that the fundamental concepts in our tool would inspire other data collection processes and annotation procedure in different domains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Indian diabetic retinopathy image dataset (IDRiD). https://idrid.grand-challenge.org. Accessed 29 May 2018

  2. Kaggle diabetic retinopathy detection competition. https://www.kaggle.com/c/diabetic-retinopathy-detection. Accessed 29 May 2018

  3. Carmona, E.J., Rincón, M., García-Feijoó, J., Martínez-de-la Casa, J.M.: Identification of the optic nerve head with genetic algorithms. Artif. Intell. Med. 43(3), 243–259 (2008)

    Article  Google Scholar 

  4. Decencière, E., et al.: Teleophta: machine learning and image processing methods for teleophthalmology. IRBM 34(2), 196–203 (2013)

    Article  Google Scholar 

  5. Decencière, E., et al.: Feedback on a publicly distributed image database: the Messidor database. Image Anal. Stereol. 33(3), 231–234 (2014)

    Article  Google Scholar 

  6. Detry-Morel, M., Zeyen, T., Kestelyn, P., Collignon, J., Goethals, M., Belgian Glaucoma Society: Screening for glaucoma in a general population with the non-mydriatic fundus camera and the frequency doubling perimeter. Eur. J. Ophthalmol. 14(5), 387–393 (2004)

    Article  Google Scholar 

  7. Gargeya, R., Leng, T.: Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7), 962–969 (2017)

    Article  Google Scholar 

  8. ETDRS Group, et al.: Grading diabetic retinopathy from stereoscopic color fundus photographsan extension of the modified airlie house classification: ETDRS report number 10. Ophthalmology 98(5), 786–806 (1991)

    Google Scholar 

  9. Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)

    Article  Google Scholar 

  10. Kempen, J.H., et al.: The prevalence of diabetic retinopathy among adults in the United States. Arch. Ophthalmol. (Chicago, Ill.: 1960) 122(4), 552–563 (2004)

    Article  Google Scholar 

  11. Lin, D.Y., Blumenkranz, M.S., Brothers, R.J., Grosvenor, D.M.: The sensitivity and specificity of single-field nonmydriatic monochromatic digital fundus photography with remote image interpretation for diabetic retinopathy screening: a comparison with ophthalmoscopy and standardized mydriatic color photography1. Am. J. Ophthalmol. 134(2), 204–213 (2002)

    Article  Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Ting, D.S.W., et al.: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318(22), 2211–2223 (2017)

    Article  Google Scholar 

  14. Park, S.J., Shin, J.Y., Kim, S., Son, J., Jung, K.H., Park, K.H.: A novel fundus image reading tool for efficient generation of a multi-dimensional categorical image database for machine learning algorithm training. J. Korean Med. Sci. 33(43) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Hwan Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Son, J., Kim, S., Park, S.J., Jung, KH. (2018). An Efficient and Comprehensive Labeling Tool for Large-Scale Annotation of Fundus Images. In: Stoyanov, D., et al. Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. LABELS CVII STENT 2018 2018 2018. Lecture Notes in Computer Science(), vol 11043. Springer, Cham. https://doi.org/10.1007/978-3-030-01364-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01364-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01363-9

  • Online ISBN: 978-3-030-01364-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics