Skip to main content

Hydantoins and Mercaptoimidazoles: Vibrational Spectroscopy as a Probe of Structure and Reactivity in Different Environments, from the Isolated Molecule to Polymorphs

  • Chapter
  • First Online:
Molecular Spectroscopy—Experiment and Theory

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 26))

  • 1587 Accesses

Abstract

In this chapter, we highlight the power of vibrational spectroscopy as central technique to investigate the structure and reactivity of two relevant families of nitrogen-containing heterocyclic molecules: hydantoins and mercaptoimidazoles . Infrared spectroscopy is used in connection with the matrix isolation technique to investigate the structures of the isolated molecules and their photochemistry , while both infrared and Raman spectroscopies , supplemented by thermodynamics, microscopy, and diffraction techniques, are used to investigate neat condensed phases of the compounds and transitions between these phases. The experimental studies are supported by extensive computational studies, which include several approaches for detailed analysis of the electron density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whittle E, Dows DA, Pimentel GC (1954) Matrix isolation method for the experimental study of unstable species. J Chem Phys 22:1943–1944

    Article  CAS  Google Scholar 

  2. Norman I, Porter G (1954) Trapped atoms and radicals in a glass ‘cage’. Nature 174:508–509

    Article  CAS  Google Scholar 

  3. Holler TP, Ruan F, Spaltenstein A, Hopkins PB (1989) Total synthesis of marine mercaptohistidines: ovothiols A, B, and C. J Org Chem 54:4570–4575

    Article  CAS  Google Scholar 

  4. Hand CE, Honek JF (2005) Biological chemistry of naturally occurring thiols of microbial and marine origin. J Nat Prod 68:293–308

    Article  CAS  PubMed  Google Scholar 

  5. Zoete V, Vezin H, Bailly F, Vergoten G, Catteau J-P, Bernier J-L (2000) 4-mercaptoimidazoles derived from the naturally occurring antioxidant ovothiols 2. Computational and experimental approach of the radical scavenging mechanism. Free Rad Res 32:525–533

    Article  CAS  Google Scholar 

  6. Crépin A, Wattier N, Petit S, Bischoff L, Fruit C, Marsais F (2009) Aminoacid-derived mercaptoimidazoles. Org Biomol Chem 7:128–134

    Article  PubMed  Google Scholar 

  7. Nagasaka A, Hidaka H (1976) Effect of antithyroid agents 6-propyl-2-thiouracil and l-methyl-2-mercaptoimidazole on human thyroid iodide peroxidase. J Clin Endocrinol Metab 43:152–158

    Article  CAS  PubMed  Google Scholar 

  8. Heath H, Toennies G (1958) The preparation and properties of ergothioneine disulphide. Biochem J 68:204–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Phan H, Lekin K, Winter SM, Oakley RT, Shatruk M (2013) Photoinduced solid state conversion of a radical σ-dimer to a π-radical pair. J Am Chem Soc 135:15674–15677

    Article  CAS  PubMed  Google Scholar 

  10. Matsuzaki H, Fujita W, Awaga K, Okamoto H (2003) Photoinduced phase transition in an organic radical crystal with room-temperature optical and magnetic bistability. Phys Rev Lett 91:017403

    Article  CAS  PubMed  Google Scholar 

  11. Brás EM, Fausto R (2018) An insight into methimazole phototautomerism: Central role of the thiyl radical and effect of benzo substitution. J Mol Struct. https://doi.org/10.1016/j.molstruc.2018.02.013 (in press)

    Article  Google Scholar 

  12. Brás EM, Fausto R (2018) Controlled light-driven switching in 2-thiobenzimidazole. J Photoch Photobio A 357:185–192

    Article  Google Scholar 

  13. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Definition of the hydrogen bond. Pure Appl Chem 83:1637–1641

    Article  CAS  Google Scholar 

  14. Lodochnikova OA, Bodrov AV, Saifina AF, Nikitina LE, Litvinov IA (2013) A new polymorph of methimazole: Single crystal and powder X-ray diffraction study. J Struct Chem 54:140–147

    Article  CAS  Google Scholar 

  15. Khan H, Badshah A, Shaheen F, Giek C, Qureshi RA (2008) 1-methyl-1H-benzimidazole-2(3H)-thione. Acta Cryst E 64:o1141

    Article  CAS  Google Scholar 

  16. Form GR, Raper ES, Downie TC (1976) The crystal and molecular structure of 2-mereaptobenzimidazole. Acta Cryst B 32:345–348

    Article  Google Scholar 

  17. Block SS (2003) Disinfection, sterilization and preservation, 4th edn. Lea & Febiger Inc., Philadelphia, USA

    Google Scholar 

  18. Kumar CSA, Kavitha CV, Vinaya K, Prasad SBB, Thimmegowda NR, Chandrappa S, Raghavan SC, Rangappa KS (2009) Synthesis and in vitro cytotoxic evaluation of novel diazaspiro bicyclo hydantoin derivatives in human leukemia cells: a SAR study. Invest New Drugs 27:327–337

    Article  Google Scholar 

  19. Kavitha CV, Nambiar M, Kumar CSA, Choudhary B, Muniyappa K, Rangappa KS, Raghavan SC (2009) Novel derivatives of spirohydantoin induce growth inhibition followed by apoptosis in leukemia cells. Biochem Pharmacol 77:348–363

    Article  CAS  PubMed  Google Scholar 

  20. Sarges R, Schnur RC, Belletire JL, Peterson MJ (1988) Spiro hydantoin aldose reductase inhibitors. J Med Chem 31:230–243

    Article  CAS  PubMed  Google Scholar 

  21. Yang K, Tang Y, Iczkowski KA (2010) Phenyl-methylene hydantoins alter CD44-specific ligand binding of benign and malignant prostate cells and suppress CD44 isoform expression. Am J Transl Res 2:88–94

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Park HS, Choi HJ, Shin HS, Lee SK, Park MS (2007) Synthesis and characterization of novel hydantoins as potential COX-2 inhibitors: 1,5-Diarylhydantoins. Bull Korean Chem Soc 28:751–757

    Article  CAS  Google Scholar 

  23. Comber RN, Reynolds RC, Friedrich JD, Manguikian RA, Buckheit RW, Truss JW, Shannon WM, Secrist JA (1992) 5,5-disubstituted hydantoins: syntheses and anti-HIV activity. J Med Chem 35:3567–3572

    Article  CAS  PubMed  Google Scholar 

  24. Cruz-Cabeza AJ, Schwalbe CH (2012) Observed and predicted hydrogen bond motifs in crystal structures of hydantoins, dihydrouracils and uracils. New J Chem 36:1347–1354

    Article  CAS  Google Scholar 

  25. Faris WM, Safi ZS (2014) Theoretical investigation of tautomerism stability of hydantoin in the gas phase and in the solution. Orient J Chem 30:1045–1054

    Article  CAS  Google Scholar 

  26. Ildiz GO, Nunes CM, Fausto R (2013) Matrix isolation infrared spectra and photochemistry of hydantoin. J Phys Chem A 117:726–734

    Article  CAS  PubMed  Google Scholar 

  27. Ildiz GO, Boz I, Unsalan O (2012) FTIR spectroscopic and quantum chemical studies on hydantoin. Opt Spectrosc 112:665–670

    Article  CAS  Google Scholar 

  28. Nogueira BA, Ildiz GO, Canotilho J, Eusébio MES, Fausto R (2014) Molecular structure, infrared spectra, photochemistry, and thermal properties of 1-methylhydantoin. J Phys Chem A 118:5994–6008

    Article  CAS  PubMed  Google Scholar 

  29. Nogueira BA, Ildiz GO, Henriques MSC, Paixão JA, Fausto R (2017) Structural and spectroscopic characterization of the second polymorph of 1-methylhydantoin. J Mol Struct 1148:111–118

    Article  CAS  Google Scholar 

  30. Nogueira BA, Ildiz GO, Canotilho J, Eusébio MES, Henriques MSC, Paixão JA, Fausto R (2017) 5-methylhydantoin: from isolated molecules in a low-temperature argon matrix to solid state polymorphs characterization. J Phys Chem A 121:5267–5279

    Article  CAS  PubMed  Google Scholar 

  31. Rosado MTS, Lopes Jesus AJ, Reva ID, Fausto R, Redinha JS (2009) Conformational cooling dynamics in matrix-isolated 1,3-butanediol. J Phys Chem A 113:7499–7507

    Article  CAS  PubMed  Google Scholar 

  32. Reva ID, Lopes Jesus AJ, Rosado MTS, Fausto R, Eusébio ME, Redinha JS (2006) Stepwise conformational cooling towards a single isomeric state in the four internal rotors system 1,2-butanediol. Phys Chem Chem Phys 8:5339–5349

    Article  CAS  PubMed  Google Scholar 

  33. Reva I, Nowak MJ, Lapinski L, Fausto R (2015) Hydrogen atom transfer reactions in thiophenol: photogeneration of two new thione isomers. Phys Chem Chem Phys 17:4888–4898

    Article  CAS  PubMed  Google Scholar 

  34. Rostkowska H, Lapinski L, Khvorostov A, Nowak MJ (2003) Photochemical double-proton-transfer reactions in 2,6-dithiopurine. A matrix isolation study. J Phys Chem A 107:804–809

    Article  CAS  Google Scholar 

  35. Chmura B, Rode MF, Sobolewski AJ, Lapinski L, Nowak MJ (2008) A computational study on the mechanism of intramolecular oxo–hydroxy phototautomerism driven by repulsive πσ* state. J Phys Chem A 112:13655–13661

    Article  CAS  PubMed  Google Scholar 

  36. Bazargani MF, Talavat L, Naderi S, Khavasi HR (2011) 2-[(1H-Imidazol-2-yl)disulfanyl]-1H-imidazole. Acta Cryst E 67:o2585

    Article  Google Scholar 

  37. Steed KM, Steed JW (2015) Packing problems: high Z′ -crystal structures and their relationship to cocrystals, inclusion compounds, and polymorphism. Chem Rev 115:2895–2933

    Article  CAS  PubMed  Google Scholar 

  38. Rozenberg MS (1996) IR spectra and hydrogen bond energies of crystalline acid salts of carboxylic acids. Spectrochim Acta A 52:1559–1563

    Article  Google Scholar 

  39. Rozenberg MS, Shoham G, Reva I, Fausto R (2004) Low temperature FTIR spectroscopy and hydrogen bonding in cytosine polycrystals. Spectrochim Acta A 60:463–470

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This investigation has been performed within the Project PTDC/QEQ-QFI/3284/2014–POCI-01-0145-FEDER-016617, funded by the Portuguese “Fundação para a Ciência e a Tecnologia” (FCT) and FEDER/COMPETE 2020-EU. The Coimbra Chemistry Centre (CQC) is supported by FCT, through the project UI0313/QUI/2013, also cofunded by FEDER/COMPETE 2020-EU. E.M.B. and B.A.N. thank FCT for the grant CCMAR/BI/0013/2017, within Project PTDC/MAR-BIO/4132/2014, and the Ph.D. grant SFRH/BD/129852/2017, respectively. R.F. and G.O.I. acknowledge the financial support through the project MATIS–Materiais e Tecnologias Industriais Sustentáveis (FCT and CENTRO-01-0145-FEDER-000014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Fausto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fausto, R., Ildiz, G.O., Brás, E.M., Nogueira, B.A. (2019). Hydantoins and Mercaptoimidazoles: Vibrational Spectroscopy as a Probe of Structure and Reactivity in Different Environments, from the Isolated Molecule to Polymorphs. In: Koleżyński, A., Król, M. (eds) Molecular Spectroscopy—Experiment and Theory. Challenges and Advances in Computational Chemistry and Physics, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-01355-4_7

Download citation

Publish with us

Policies and ethics