Skip to main content

Spectroscopy in the Analysis of Artworks

  • Chapter
  • First Online:
Molecular Spectroscopy—Experiment and Theory

Abstract

This chapter is dedicated to the application of selected spectroscopic techniques to investigations on cultural heritage objects. The rapid technical advancement of Raman instrumentation, observed in the recent years, positioned this spectroscopy as an outmost tool in this field. The use of Raman spectroscopy in the analysis of chemical composition is presented for several classes of heritage materials: manuscripts, painting, ceramics, minerals, and amber . In Sect. 16.3, Vis fiber optic reflectance spectroscopy is presented as a tool allowing one to obtain information important for selecting proper preventive measures, in this case, exhibition policies safeguarding artifacts against photodegradation. The technique discussed here—the microfade testing (MFT)—allows monitoring color changes as induced by the action of light on a selected spot on the artifact in real time, thus giving the most direct, empirical clues to a possible future alteration of the objects’ appearance when it is exposed to light on a museum wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferchault de Réaumur RA (1719) Observations sur la matière qui colore des perles fausses et sur quelques autres matières animales d’une semblable couleur, à l’occasion de quoi on essaie d’expliquer la formation des écailles de poissons. In: Académie des Sciences (ed) Memoires Académie des Sciences. Académie des Sciences. Paris

    Google Scholar 

  2. Ferchault de Réaumur RA. (1727) Idée générale des différentes manières dont on peut faire la Porcelaine et quelles sont les véritablesmatières de celle de la Chine. In: Académie des Sciences (ed) Memoires Académie des Sciences. Paris

    Google Scholar 

  3. Ferchault de Réaumur RA (1729) Second mémoire sur la porcelaine ou suite des principes qui doivent conduire dans la composition des porcelaines de différents genres et qui établissent les caractères des matières fondantes qu’on ne peut choisir pour tenir lieu de celle qu’on employe à l. In: Académie des Sciences (ed) Memoires Académie des Sciences. Paris

    Google Scholar 

  4. Ferchault de Réaumur RA. (1736) Mémoire sur l’art de faire une nouvelle espèce de Porcelaine par des moyens extrêmement simples et faciles ou de transformer le verre en porcelaine. In: Académie des Sciences (ed) Memoires Académie des Sciences. Paris

    Google Scholar 

  5. Edwards HGM, Vandenabeele P (2016) Raman spectroscopy in art and archaeology. Phil Trans R Soc A 374:1–3

    Google Scholar 

  6. Pollard, A. M., Batt, C. M., Stern, B. and Young SMM (2007) Analytical chemistry in archaeology. Camb Manuals Archaeol

    Google Scholar 

  7. Eccles HRB (1922) Analysis of English porcelains in the V&A museum collections. Victoria and Albert Museum Publishing, South Kensington

    Google Scholar 

  8. Vandenabeele P, Edwards HGM, Moens L (2007) A decade of Raman spectroscopy in art and archeology. Chem Rev 107:675–686

    Article  CAS  PubMed  Google Scholar 

  9. Vandenabeele P, Edwards HGM, Jehlička J (2014) The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chem Soc Rev 43:2628

    Article  CAS  PubMed  Google Scholar 

  10. Centeno SA (2016) Identification of artistic materials in paintings and drawings by Raman spectroscopy: some challenges and future outlook. J Raman Spectrosc 47:9–15

    Article  CAS  Google Scholar 

  11. Casadio F, Daher C, Bellot-Gurlet L (2016) Raman Spectroscopy of cultural heritage materials: overview of applications and new frontiers in instrumentation, sampling modalities, and data processing. Top Curr Chem 5:374

    Google Scholar 

  12. Bersani D, Conti C, Matousek P, Pozzi F, Vandenabeele P (2016) Methodological evolutions of Raman spectroscopy in art and archaeology. Anal Methods 8:8395–8409

    Article  Google Scholar 

  13. Colomban P (2018) On-site Raman study of artwork: procedure and illustrative examples. J Raman Spectrosc 49:921–934

    Article  CAS  Google Scholar 

  14. Burgio L, Clark RJH (2001) Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation Spectrochim Acta PA 57:1491–1521

    Article  CAS  Google Scholar 

  15. Bouchard M, Smith DC (2003) Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochim Acta A 59:2247–2266

    Article  CAS  Google Scholar 

  16. Fremout W, Saverwyns S (2012) Identification of synthetic organic pigments: the role of a comprehensive digital Raman spectral library. J Raman Spectrosc 43:1536–1544

    Article  CAS  Google Scholar 

  17. Vandenabeele P, Moens L, Edwards HGM, Dams R (2000) Raman spectroscopic database of azo pigments and application to modern art studies. J Raman Spectrosc 31:509–517

    Article  CAS  Google Scholar 

  18. Edwards HGM, Farwell DW, Daffner L (1996) Fourier-transform Raman spectroscopic study of natural waxes and resins. Spectrochim Acta A 52:1639–1648

    Article  Google Scholar 

  19. Leona M, Stenger J, Ferloni E (2006) Application of surface-enhanced Raman scattering techniques to the ultrasensitive identification of natural dyes in works of art. J Raman Spectrosc 37:981–992

    Article  CAS  Google Scholar 

  20. Edwards HGM, Farwell DW, Holder JM, Lawson EE (1997) Fourier-transform Raman spectroscopy of ivory: II. Spectroscopic analysis and assignments. J Mol Struct 435:49–58

    Article  CAS  Google Scholar 

  21. Madariaga JM (2015) Analytical chemistry in the field of cultural heritage. Anal Methods 7:4848–4876

    Article  Google Scholar 

  22. Edwards HGM, Chalmers JM (eds) (2005) Raman spectroscopy in archaeology and art history. Royal Society of Chemistry, Cambridge

    Google Scholar 

  23. Vandenabeele P (2004) Raman spectroscopy in art and archaeology. J Raman Spectrosc 35:607–609

    Article  CAS  Google Scholar 

  24. Bellot-Gurlet L, Pages-Camagna S, Coupry C (2006) Raman spectroscopy in art and archaeology. J Raman Spectrosc 37:962–965

    Article  CAS  Google Scholar 

  25. Baraldi P, Tinti A (2008) Raman spectroscopy in art and archaeology. J Raman Spectrosc 39:963–965

    Article  CAS  Google Scholar 

  26. Madariaga JM (2010) Raman spectroscopy in art and archaeology. J Raman Spectrosc 41:1389–1393

    Article  CAS  Google Scholar 

  27. Bersani D, Madariaga JM (2012) Applications of Raman spectroscopy in art and archaeology. J Raman Spectrosc 43:1523–1528

    Article  CAS  Google Scholar 

  28. Ropret P, Madariaga JM (2014) Applications of Raman spectroscopy in art and archaeology. J Raman Spectrosc 45:985–992

    Article  CAS  Google Scholar 

  29. Łydżba-Kopczyńska B, Madariaga JM (2016) Applications of Raman spectroscopy in art and archaeology. J Raman Spectrosc 47:1404–1407

    Article  CAS  Google Scholar 

  30. Bohning JJ, Misra TN, Choudhury M (1998) The Raman effect. American Chemical Society, Washington

    Google Scholar 

  31. Delhaye M, Dhamelincourt P (1975) Raman microprobe and microscope with laser excitation. J Raman Spectrosc 3:33–43

    Article  CAS  Google Scholar 

  32. Analytical Methods Committee AN 67 (2015) Raman spectroscopy in cultural heritage: Background paper. Anal Methods 7:4844–4847

    Google Scholar 

  33. Edwards HGM, Vandenabeele P (2012) Analytical archaeometry. Selected Topics. The Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  34. Vandenabeele P, Weis TL, Grant ER, Moens LJ (2004) A new instrument adapted to in situ Raman analysis of objects of art. Anal Bioanal Chem 379:137–142

    Article  CAS  PubMed  Google Scholar 

  35. Jehlička J, Culka A, Bersani D, Vandenabeele P (2017) Comparison of seven portable Raman spectrometers: beryl as a case study. J Raman Spectrosc 48:1289–1299

    Article  CAS  Google Scholar 

  36. Guineau B (1984) Microanalysis of painted manuscripts and of colored archaeological materials by Raman laser microprobe. J Forensic Sci 29:471–485

    Article  CAS  Google Scholar 

  37. Guineau BGV (1984) Analyse non destructive des pigments par microsonde Raman laser: exemples de l’azurite et de la malachite. Stud Conserv 29:35–41

    CAS  Google Scholar 

  38. Delhaye M, Guineau B, Vezin J, Coupry C (1985) La microsonde Raman au secours des oeuvres d’art. Mesures 11:119–124

    Google Scholar 

  39. Guineau B (1987) Non-destructive analysis of organic pigments and dyes using raman microprobe, microfluorimeter rand absorption microspectrophotometer. Stud Conserv 34:38–40

    Google Scholar 

  40. Edwards HGM, Farwell DW, Seaward MRD (1991) Raman spectra of oxalates in lichen encrustations on Renaissance frescoes. Spectrochim Acta A 47:1531–1539

    Article  Google Scholar 

  41. Edwards HGM, Farwell DW, Jenkins R, Seaward MRD (1992) Vibrational Raman spectroscopic studies of calcium oxalate monohydrate and dihydrate in lichen encrustations on renaissance frescoes. J Raman Spectrosc 23:185–189

    Article  CAS  Google Scholar 

  42. Russ J, Palma RL, Loyd DH, Farwell DWEH (1995) Analysis of the rock accretions in the Lower Pecos Region of SW Texas. Geoarchaeology 10:43–63

    Article  Google Scholar 

  43. Williams AC, Edwards HGM, Barry BW (1995) The ‘Iceman’: molecular structure of 5200-year-old skin characterised by raman spectroscopy and electron microscopy. BBA-Protein Struct Mol 1246:98–105

    Article  Google Scholar 

  44. Best SP, Clark RJH, Withnall R (1992) Non-destructive pigment analysis of artefacts by Raman microscopy. Endeavour 16:66–73

    Article  CAS  Google Scholar 

  45. Clark RJH, Cooksey CJ, Daniels MAMWR (1993) Indigo, woad, and Tyrian purple: important vat dyes from antiquity to the present. Endeavour 17:191–199

    Article  CAS  Google Scholar 

  46. Ciomartan DA, Clark RJH (1996) Raman microscopy applied to the analysis of the pigments used in two persian manuscripts. J Braz Chem Soc 7:395–402

    Article  CAS  Google Scholar 

  47. Burgio L, Ciomartan DA, Clark RJH (1997) Pigment identification on medieval manuscripts, paintings and other artefacts by Raman microscopy: applications to the study of three German manuscripts. J Mol Struct 405:1–11

    Article  CAS  Google Scholar 

  48. Burgio L, Ciomartan DA, Clark RJH (1997) Raman microscopy study of the pigments on three illuminated mediaeval latin manuscripts. J Raman Spectrosc 28(7):9–83

    Google Scholar 

  49. Coupry C, Lautié A, Revault M, Dufilho J (1994) Contribution of Raman spectroscopy to art and history. J Raman Spectrosc 25:89–94

    Article  CAS  Google Scholar 

  50. Turrell G (1996) Raman microscopy developments and applications. Elsevier, Academic Press, Amsterdam

    Google Scholar 

  51. Pagès-Camagna S, Colinart S, Coupry C (1999) Fabrication processes of archaeological Egyptian blue and green pigments enlightened by Raman microscopy and scanning electron microscopy. J Raman Spectrosc 30:313–317

    Article  Google Scholar 

  52. Bruni S, Cariati F, Cl Bianchi, Zanardini E, Sorlini C (1995) Spectroscopic investigation of red stains affecting the Carrara marblefaçade of the Certosa of Pavia. Archaeometry 37:249–255

    Article  CAS  Google Scholar 

  53. Trentelman K, Stodulski L, Pavlosky M (1996) Characterization of pararealgar and other light-induced transformation products from realgar by Raman microspectroscopy. Anal Chem 68:1755–1761

    Article  CAS  PubMed  Google Scholar 

  54. Barone G, Crupi V, Galli S, Majolino D, Migliardo P, Venuti V (2003) Spectroscopic investigation of Greek ceramic artefacts. J Mol Struct 651–653:449–458

    Article  CAS  Google Scholar 

  55. Bruno P, Caselli M, Curri ML, Favia P, Laganara C, Traini A (1997) Surface examination of red painting on medieval pottery from the South of Italy. Anal Chim 87:539–553

    CAS  Google Scholar 

  56. Lofrumento C, Zoppi A, Castellucci EM (2004) Micro-Raman spectroscopy of ancient ceramics: a study of Frenchsigillata wares. J Raman Spectrosc 35:650–655

    Article  CAS  Google Scholar 

  57. Colomban P, Treppoz F (2001) Identification and differentiation of ancient and modern European porcelains by Raman macro- and micro-spectroscopy. J Raman Spectrosc 32:93–102

    Article  CAS  Google Scholar 

  58. Colomban P, Sagon G, Faurel X (2001) Differentiation of antique ceramics from the Raman spectra of their coloured glazes and paintings. J Raman Spectrosc 32:351–360

    Article  CAS  Google Scholar 

  59. Mioč UB, Colomban P, Sagon G, Stojanović M, Rosić A (2004) Ochre decor and cinnabar residues in Neolithic pottery from Vinča, Serbia. J Raman Spectrosc 35:843–846

    Article  CAS  Google Scholar 

  60. Smith DC, Vernioles JD (1997) The temperature of fusion of a celtic vitrified fort: a feasibility study of the application of the Raman microprobe to the non-destructive characterization of unprepared archaeological objects. J Raman Spectrosc 28:195–197

    Article  CAS  Google Scholar 

  61. Smith DC, Gendron F (1997) Archaeometric application of the Raman microprobe to the non-destructive identification of two pre-columbian ceremonial polished ‘greenstone’ axe-heads from Mesoamerica. J Raman Spectrosc 28:731–738

    Article  CAS  Google Scholar 

  62. Gendron F, Smith DC, Gendron-Badou A (2002) Discovery of jadeite-jade in Guatemala confirmed by non-destructive Raman microscopy. J Archaeol Sci 29:837–851

    Article  Google Scholar 

  63. Parras D, Vandenabeele P, Sánchez A, Montejo M, Moens L, Ramos N (2010) Micro-Raman spectroscopy of decorated pottery from the Iberian archaeological site of puente tablas. J Raman Spectrosc 41:68–73

    Article  CAS  Google Scholar 

  64. Bersani D, Lottici PP, Virgenti S, Sodo A, Malvestuto G, Botti A, Salvioli-Mariani E, Tribaudino M, Ospitali F, Catarsi M (2010) Multi-technique investigation of archaeological pottery from Parma (Italy). J Raman Spectrosc 41:1556–1561

    Article  CAS  Google Scholar 

  65. Colomban P (2013) The destructive/non-destructive identification of enameled pottery, glass artifacts and associated pigments—a brief overview. Arts 2:77–110

    Article  Google Scholar 

  66. Medeghini L, Lottici PP, De Vito C, Mignardi S, Bersani D (2014) Micro-Raman spectroscopy and ancient ceramics: applications and problems. J Raman Spectrosc 45:1244–1250

    Article  CAS  Google Scholar 

  67. De Benedetto GE, Nicolì S, Pennetta A, Rizzo D, Sabbatini L, Mangone A (2011) An integrated spectroscopic approach to investigate pigments and engobes on pre-Roman pottery. J Raman Spectrosc 42:1317–1323

    Article  CAS  Google Scholar 

  68. De Vito C, Medeghini L, Mignardi S, Ballirano P, Peyronel L (2015) Technological fingerprints of the Early Bronze Age clay figurines from Tell Mardikh-Ebla (Syria). J Eur Ceram Soc 35:3743–3754

    Article  CAS  Google Scholar 

  69. Edwards HGM (1998) Raman spectroscopy of fresco fragment substrates. Asian J Phys 7:383–389

    CAS  Google Scholar 

  70. Edwards HGM, Farwell DW, Newton EM, Perez FR, Edwards HGM, Farwell DW, Newton EM, Perez FR (1999) Minium; FT-Raman non-destructive analysis applied to an historical controversy. Analyst 124:1323–1326

    Article  CAS  Google Scholar 

  71. Edwards HGM, Farwell DW, Rull Perez F, Jorge Villar S (1999) Spanish mediaeval frescoes at Basconcillos del Tozo: a fourier transform Raman spectroscopic study. J Raman Spectrosc 30:307–311

    Article  CAS  Google Scholar 

  72. Edwards HGM, Farwell DW, Rull Perez F, Jorge Villar S (1999) Spanish mediaeval frescoes at Basconcillos del Tozo: a fourier transform Raman spectroscopic study. J Raman Spectrosc 30:307–311

    Article  CAS  Google Scholar 

  73. Bersani D, Antonioli G, Lottici PP, Casoli A (2003) Raman microspectrometric investigation of wall paintings in S. Giovanni Evangelista Abbey in Parma: a comparison between two artists of the 16th century. Spectrochimica Acta A 59:2409–2417

    Article  CAS  Google Scholar 

  74. Bersani D, Paolo Lottici P, Antonioli G, Campani E, Casoli A, Violante C (2004) Pigments and binders in the wall paintings of Santa Maria della Steccata in Parma(Italy): the ultimate technique of Parmigianino. J Raman Spectrosc 35:694–703

    Article  CAS  Google Scholar 

  75. Baraldi P, Bonazzi A, Giordani N, Paccagnella F, Zannini P (2006) Analytical characterization of Roman plasters of the ‘Domus farini’ in Modena. Archaeometry 48:481–499

    Article  CAS  Google Scholar 

  76. Mazzeo R, Baraldi P, Lujàn R, Fagnano C (2004) Characterization of mural painting pigments from the Thubchen Lakhang temple in Lo Manthang, Nepal. J Raman Spectrosc 35:678–685

    Article  CAS  Google Scholar 

  77. Aliatis I, Bersani D, Campani E, Casoli A, Lottici PP, Mantovan S, Marino IG (2010) Pigments used in Roman wall paintings in the Vesuvian area. J Raman Spectrosc 41:1537–1542

    Article  CAS  Google Scholar 

  78. Maguregui M, Knuutinen U, Castro K, Madariaga JM (2010) Raman spectroscopy as a tool to diagnose the impact and conservation stateof Pompeian second and fourth style wall paintings exposed to diverseenvironments (House of Marcus Lucretius). J Raman Spectrosc 41:1400–1409

    Article  CAS  Google Scholar 

  79. Madariaga JM, Maguregui M, De Vallejuelo SFO, Knuutinen U, Castro K, Martinez-Arkarazo I, Giakoumaki A, Pitarch A (2014) In situ analysis with portable Raman and ED-XRF spectrometers for the diagnosis of the formation of efflorescence on walls and wall paintings of the Insula IX 3 (Pompeii, Italy). J Raman Spectrosc 45:1059–1067

    Article  CAS  Google Scholar 

  80. Madariaga JM, Maguregui M, Castro K, Knuutinen U, Martínez-Arkarazo I (2016) Portable Raman, DRIFTS, and XRF analysis to diagnose the conservation state of two wall painting panels from pompeii deposited in the Naples National Archaeological Museum (Italy). Appl Spectrosc 70:137–146

    Article  CAS  PubMed  Google Scholar 

  81. Prieto-Taboada N, Fdez-Ortiz De Vallejuelo S, Veneranda M, Marcaida I, Morillas H, Maguregui M, Castro K, De Carolis E, Osanna M, Madariaga JM (2018) Study of the soluble salts formation in a recently restored house of Pompeii by in-situ Raman spectroscopy. Sci Rep 8:1613

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Smith DC, Bouchard M, Lorblanchet M (1999) An initial Raman microscopic investigation of prehistoric rock art in caves of the Quercy District, S.W., France. J Raman Spectrosc 30:347–354

    Article  CAS  Google Scholar 

  83. Edwards HGM, Drummond L, Russ J (1999) Fourier transform Raman spectroscopic study of prehistoric rock paintings from the Big Bend region, Texas. J Raman Spectrosc 30:421–428

    Article  CAS  Google Scholar 

  84. Hernanz A, M. Gavira-Vallejo J don J, Ruiz-Lopez F (2006) Introduction to Raman microscopy of prehistoric rockpaintings from the Sierra de las Cuerdas, Cuenca, Spain. J Raman Spectrosc 37:1054–1062

    Article  CAS  Google Scholar 

  85. Hernanz A, Gavira-Vallejo JM, Ruiz-López JF (2007) Calcium oxalates and prehistoric paintings. the usefulness of these biomaterials. J Optoelectron Adv Mater 9:512–521

    CAS  Google Scholar 

  86. Hernanz A, Gavira-Vallejo JM, Ruiz-Lopez JF, Edwards HGM (2008) A comprehensive micro-Raman spectroscopic study of prehistoric rock paintings from the Sierra de las Cuerdas, Cuenca, Spain. J Raman Spectrosc 972–984

    Article  CAS  Google Scholar 

  87. Hernanz A, Ruiz-López JF, Gavira-Vallejo JM, Martin S, Gavrilenko E (2010) Raman microscopy of prehistoric rock paintings from the Hoz de Vicente, Minglanilla, Cuenca, Spain. J Raman Spectrosc 41:1394–1399

    Article  CAS  Google Scholar 

  88. Hernanz A, Gavira-Vallejo JM, Ruiz-Lõpez JF, Martin S, Maroto-Valiente Á, De Balbín-Behrmann R, Menéndez M, Alcolea-González JJ (2012) Spectroscopy of Palaeolithic rock paintings from the Tito Bustillo and El Buxu Caves, Asturias, Spain. J Raman Spectrosc 43:1644–1650

    Article  CAS  Google Scholar 

  89. Colomban P, Slodczyk A (2009) Raman intensity: an important tool to study the structure and phase transitions of amorphous/crystalline materials. Opt Mater (Amst) 31:1759–1763

    Article  CAS  Google Scholar 

  90. Katsaros T, Ganetsos T (2012) Raman characterization of gemstones from the collection of the Byzantine & Christian Museum. Archaeology 1:7–14

    Google Scholar 

  91. Košařová V, Hradil D, Hradilová J, Čermáková Z, Němec I, Schreiner M (2016) The efficiency of micro-Raman spectroscopy in the analysis of complicated mixtures in modern paints: Munch’s and Kupka’s paintings under study. Spectrochim Acta A 156:36–46

    Article  CAS  Google Scholar 

  92. Bersani D, Lottici PP (2010) Applications of Raman spectroscopy to gemology. Anal Bioanal Chem 397:2631–2646

    Article  CAS  PubMed  Google Scholar 

  93. Ermakov NP (1965) Research on the nature of mineral-forming solutions: with special reference to data from fluid inclusions. Oxford, Pergamon Press Ltd., Oxford

    Google Scholar 

  94. Roedder E (1984) Fluid inclusions. In: Ribbe PH (ed) Reviews in mineralogy and geochemistry. Mineralogical Society of America, p 644

    Google Scholar 

  95. Łydzba-Kopczyńska B, Zych E, August C, Rusek G, Pankiewicz A (2008) Analytical techniques in provenance determination of archaeological objects from Lower Silesia. J Mol Struct 887:41–47

    Article  CAS  Google Scholar 

  96. Kolesov BA, Geiger CA (1998) Raman spectra of silicate garnets. Phys Chem Miner 25:142–151

    Article  CAS  Google Scholar 

  97. Barone G, Bersani D, Lottici PP, Mazzoleni P, Raneri S, Longobardo U (2016) Red gemstone characterization by micro-Raman spectroscopy: the case of rubies and their imitations. J Raman Spectrosc 47:1534–1539

    Article  CAS  Google Scholar 

  98. Reiche I, Pages-Camagna S, Lambacher L (2004) In situ Raman spectroscopic investigations of the adorning gemstones on the reliquary Heinrich’s Cross from the treasury of Basel Cathedral. J Raman Spectrosc 35:719–725

    Article  CAS  Google Scholar 

  99. Ziemann MA (2006) In situ micro-Raman spectroscopy on minerals on-site in the Grotto Hall of the New Palace, Park Sanssouci, in Potsdam. J Raman Spectrosc 37:1019–1025

    Article  CAS  Google Scholar 

  100. Coccato A, Bersani D, Coudray A, Sanyova J, Moens L, Vandenabeele P (2016) Raman spectroscopy of green minerals and reaction products with an application in Cultural Heritage research. J Raman Spectrosc 47:1429–1443

    Article  CAS  Google Scholar 

  101. Bersani D, Lottici PP (2016) Raman spectroscopy of minerals and mineral pigments in archaeometry. J Raman Spectrosc 47:499–530

    Article  CAS  Google Scholar 

  102. Centeno SA, Llado Buisan V, Ropret P (2007) Raman study of synthetic organic pigments and dyes in early lithographic inks (1890–1920). J Raman Spectrosc 37:111–1118

    Google Scholar 

  103. Daher C, Bellot-Gurlet L, Le Hô AS, Paris C, Regert M (2013) Advanced discriminating criteria for natural organic substances of cultural heritage interest: spectral decomposition and multivariate analyses of FT-Raman and FT-IR signatures. Talanta 115:540–547

    Article  CAS  PubMed  Google Scholar 

  104. Daher C, Pimenta V, Bellot-Gurlet L (2014) Towards a non-invasive quantitative analysis of the organic components in museum objects varnishes by vibrational spectroscopies: methodological approach. Talanta 129:336–345

    Article  CAS  PubMed  Google Scholar 

  105. Klisinska A, Łydżba-Kopczyńska B, Czarnecka M, Koźlecki T, del Hoyo Mélendez J, Mendys A, Kłosowska‐Klechowska, Anna Obarzanowski M, Frączek P (2018) Raman spectroscopy as a powerful technique for the identification of polymers used in cast sculptures from museum collections. J Raman Spectrosc. https://doi.org/10.1002/jrs.5407 (First published: 08 June 2018)

  106. Van Elslande E, Lecomte S, Le Ho A-S (2008) Micro-Raman spectroscopy (MRS) and surface-enhanced Raman scattering (SERS) on organic colourants in archaeological pigments. J Raman Spectrosc 39:10001–11006

    Google Scholar 

  107. Melo MJ, Nabais P, Guimarães M, Araújo R, Castro R, Oliveira MC, Whitworth I (2016) Organic dyes in illuminated manuscripts: a unique cultural and historic record. Philos Trans R Soc A Math Phys Eng Sci 374:20160050

    Article  CAS  Google Scholar 

  108. Pozzi F, Leona M (2016) Surface-enhanced Raman spectroscopy in art and archaeology. J Raman Spectrosc 47:67–77

    Article  CAS  Google Scholar 

  109. Kiefer W, Mazzolini AP, Stoddart PR (2007) Recent advances in linear and nonlinear Raman spectroscopy I. J Raman Spectrosc 38:1538–1553

    Article  CAS  Google Scholar 

  110. Cappa F, Pintus V, Ofner J, Schreiner M, Lendl B (2015) Raman imaging for cultural heritage investigations. In: 8th international conference on advanced vibrational spectroscopy, Wien, 7–17th July 2015, pp 246–247

    Google Scholar 

  111. Antunes V, Candeias A, Mirão J, Carvalho ML, Dias CB, Manhita A, Cardoso A, Francisco MJ, Lauw A, Manso M (2018) Analytical characterization of the palette and painting techniques of Jorge Afonso, the great 16th century Master of Lisbon painting workshop. Spectrochim Acta A 193:264–275

    Article  CAS  Google Scholar 

  112. Christiansen MB, Sørensen MA, Sanyova J, Bendix J, Simonsen KP (2017) Characterisation of the rare cadmium chromate pigment in a 19th century tube colour by Raman, FTIR, X-ray and EPR. Spectrochim Acta A 208–214

    Article  CAS  Google Scholar 

  113. Basso E, Invernizzi C, Malagodi M, La Russa MF, Bersani D, Lottici PP (2014) Characterization of colorants and opacifiers in roman glass mosaic tesserae through spectroscopic and spectrometric techniques. J Raman Spectrosc 45:238–245

    Article  CAS  Google Scholar 

  114. Casadio F, Bezúr A, Fiedler I, Muir K, Trad T, MacCagnola S (2012) Pablo Picasso to Jasper Johns: a Raman study of cobalt-based synthetic inorganic pigments. J Raman Spectrosc 43:1761–1771

    Article  CAS  Google Scholar 

  115. Otero V, Sanches D, Montagner C, Vilarigues M, Carlyle L, Lopes JA, Melo MJ (2014) Characterisation of metal carboxylates by Raman and infrared spectroscopy in works of art. J Raman Spectrosc 45:1197–1206

    Article  CAS  Google Scholar 

  116. Carlesi S, Ricci M, Cucci C, Lofrumento C, Picollo M, Becucci M (2016) Multivariate analysis of combined reflectance FT-NIR and micro-Raman spectra on oil-paint models. Microchem J 124:703–711

    Article  CAS  Google Scholar 

  117. Cheilakou E, Troullinos M, Koui M (2014) Identification of pigments on Byzantine wall paintings from Crete (14th century AD) using non-invasive fiber optics diffuse reflectance spectroscopy (FORS). J Archaeol Sci 41:541–555

    Article  CAS  Google Scholar 

  118. Bronzato M, Zoleo A, Biondi B, Centeno SA (2016) An insight into the metal coordination and spectroscopic properties of artistic Fe and Fe/Cu logwood inks. Spectrochim Acta A 153:522–529

    Article  CAS  Google Scholar 

  119. Cucci C, Bartolozzi G, De Vita M, Marchiafava V, Picollo M, Casadio F (2016) The colors of Keith Haring: a spectroscopic study on the materials of the mural painting Tuttomondo and on reference contemporary outdoor paints. Appl Spectrosc 70:186–196

    Article  CAS  PubMed  Google Scholar 

  120. Sirat C (2002) Hebrew Manuscripts of the Middle Ages. Cambridge University Press, Cambridge

    Google Scholar 

  121. Gruchalska A, Rogulska A, Rusek G, Łydzba-Kopczyńska BI (2010) Spectroscopic studies of atypically illuminated medieval Hebrew bible in comparison to a XV century western manuscript. AIP Conf Proc 1267:238–239

    Article  Google Scholar 

  122. Łydżba-Kopczyńska B, Rogulska A (2016) Decoration techniques in mediaeval Hebrew Bibles: non-invasive XRF and μ-Raman analysis. In: 6th meeting X-ray and other techniques in investigations of the objects of cultural heritage, Kraków, 19–21 May 2016, pp 238–239

    Google Scholar 

  123. Ray E (1999) Sofer: the story of a Torah Scroll. Torah Aura Productions, Los Angeles

    Google Scholar 

  124. Burgio L, Clark RJH, Firth S (2001) Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products. Analyst 126:222–227

    Article  CAS  PubMed  Google Scholar 

  125. Conservation KP offers RM for A. http://shop.kremerpigments.com/en/

  126. Eastaugh N, Walsh V, Siddall R, Chaplin T (2004) Optical microscopy of historical pigments. Taylor & Francis, London

    Google Scholar 

  127. Łydzba-Kopczyńska BI, Gediga B, Chojcan J, Sachanbiński M (2012) Provenance investigations of amber jewelry excavated in Lower Silesia (Poland) and dated back to Early Iron Age. J Raman Spectrosc 43:1839–1844

    Article  CAS  Google Scholar 

  128. Angelini I, Bellintani P (2005) Archaeological ambers from northern Italy: an FTIR-DRIFT study of provenance by comparison with the geological amber database. Archaeometry 47:441–454

    Article  CAS  Google Scholar 

  129. Guiliano M, Asia L, Onoratini G, Mille G (2007) Applications of diamond crystal ATR FTIR spectroscopy to the characterization of ambers. Spectrochim Acta A 67:1407–1411

    Article  CAS  Google Scholar 

  130. Seger H (1930) Der Bernsteinfund von Hartlieb bei Breslau. Altschlesien 3:171–184

    Google Scholar 

  131. Nowothnig W (1937) Der Bernsteinhandelsplatz von Breslau-Hartlieb. Altschlesische Blätter. Altschlesische, Blätter, pp 48–51

    Google Scholar 

  132. Łydżba-Kopczyńska B, Krzywiecka M, Chojcan J, Madera PS (2015) Wrocław-Partynice amber depots—the application of the comprehensive spectral database of succinate and fossil and subfossil resins. In: 8th Congress on Application of Raman Spectroscopy in Art and Archaeology Wroclaw, 1–5 Sept 2015, pp 146–147

    Google Scholar 

  133. Niedźwiedzki R (2014) Gigantyczny bursztynowy “skarb” partynicki z Wrocławia. In: Amberif 2014. Bursztyn. Gemmologia – Muzealnictwo – Archeologia. Gdańsk-Warszawa, 23–26

    Google Scholar 

  134. Brody RH, Edwards HGM, Pollard AM (2001) A study of amber and copal samples using FT-Raman. Spectrochim Acta A 57:1325–1338

    Article  CAS  Google Scholar 

  135. Peris-Díaz MD, Łydżba-Kopczyńska B, Sentandreu E (2018) Raman spectroscopy coupled to chemometrics to discriminate provenance and geological age of amber. J Raman Spectrosc 49:842–851

    Article  CAS  Google Scholar 

  136. Łydżba-Kopczyńska B, Białek E, Rusek G, Weker W (2011) Badania pochodzenia obiektów bursztynowych poddanych zabiegom konserwatorskim. In: XI konferencja Analiza chemiczna w ochronie zabytków, Warszawa 1–2 Dec 2011, p. 33

    Google Scholar 

  137. Navas N, Romero-Pastor J, Manzano E, Cardell C (2010) Raman spectroscopic discrimination of pigments and tempera paint model samples by principal component analysis on first-derivative spectra. J Raman Spectrosc 41:1486–1493

    Article  CAS  Google Scholar 

  138. Doherty B, Vagnini M, Dufourmantelle K, Sgamellotti A, Brunetti B, Miliani C (2014) A vibrational spectroscopic and principal component analysis of triarylmethane dyes by comparative laboratory and portable instrumentation. Spectrochim Acta A 121:292–305

    Article  CAS  Google Scholar 

  139. Otero V, Sanches D, Montagner C, Vilarigues M, Carlyle L, Lopes JA, Melo MJ (2014) Characterisation of metal carboxylates by Raman and infrared spectroscopy in works of art. J Raman Spectrosc 45:1197–1206

    Article  CAS  Google Scholar 

  140. Delaney JK, Ricciardi P, Deming Glinsman L, Facin M, Thoury M, Palmet M, René de la Rie E (2014) Use of imaging spectroscopy, fiber optic reflectance spectroscopy, and X-ray fluores-cence to map and identify pigments in illuminated manuscripts. Stud Conserv 59:91–101

    Article  CAS  Google Scholar 

  141. Montagner C, Bacci M, Bracci S, Freeman R, Picollo M (2011) Library of UV-Vis-NIR reflectance spectra of modern organic dyes from historic pat-tern-card coloured papers. Spectrochim Acta A 79:1669–1680

    Article  CAS  Google Scholar 

  142. Depuis G, Menu M (2006) Quantitative characterisation of pigment mixtures used in art by fiber-optics diffuse-reflectance spectroscopy. Appl Phys A 83:469–474

    Article  CAS  Google Scholar 

  143. FORS (2016) Fiber optics reflectance spectra (FORS) of pictorial materials in the 270–1700 nm range. http://fors.ifac.cnr.it. Accessed 16 June 2018

  144. Bacci M, Picollo M, Trumpy G, Tsukada M, Kunzelman D (2007) Non-invasive identification of white pigments on 20th century oil paintings by using fiber optic reflectance. Spectrosc JAIC 46:27–37

    Google Scholar 

  145. Cosentino A (2014) FORS spectral database of historical pigments in different binders. e-Conservation J 2: 57–68

    Google Scholar 

  146. Cavaleria T, Giovagnolia A, Nervoa M (2013) Pigments and mixtures identification by Visible Reflectance Spectroscopy. Procedia Chem 8:45–54

    Article  CAS  Google Scholar 

  147. Some examples for Textiles (2014) ISO 105-B01:2014 Textiles—tests for colour fastness—part B01: colour fastness to light: daylight; ISO 105-B02:2014, Textiles—tests for colour fastness—part B02: colour fastness to artificial light: Xenon arc fading lamp

    Google Scholar 

  148. Whitmore PM, Pan X, Bailie C (1999) Predicting the fading of objects: identification of fugitive colorants through direct nondestructive lightfastness measurements. JAIC 38:395–409

    Google Scholar 

  149. Pesme C, Lerwill A, Beltran V, Druzik J (2016) Development of contact portable microfade tester to assess light sensitivity of col-lection items. J Am Inst Conserv 55:117–137

    Article  Google Scholar 

  150. Ashley-Smith J, Derbyshire A, Pretzel B (2002) The continuing development of a practical lighting policy for works of art on paper and other object types at the Victoria and Albert Museum. In: ICOM Committee for Conservation, preprints, 13th triennial meeting, Rio De Janeiro, Brazil. ICOM, Paris, pp 3–8

    Google Scholar 

  151. Feller RL (1979) Use of the international standards organization’s blue wool standards for exposure to light. In: AIC preprints of papers presented at the 7th annual meeting, Toronto, Canada

    Google Scholar 

  152. Michalski S (1987) Damage to museum objects by visible radiation (light) and ultraviolet radiation (UV). In: Lighting in museums, galleries and historic houses. Museums Association, UKIC, and Group of Designers and Interpreters for Museums, London

    Google Scholar 

  153. Thompson G (2013) The museum environment, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  154. Colby KM (1992) A suggested exhibition/exposure policy for works of art on paper. J Int Inst Conserv Can Gr 17:3–11

    Google Scholar 

  155. Roscoe HE (1865) The Bakerian Lecture: on a method of meteorological registration of the chemical action of total daylight. Philos Trans R Soc L 155:605–631

    Article  Google Scholar 

  156. del Hoyo-Meléndez JM, Mecklenburg MF (2011) An investigation of the reciprocity principle of light exposures using micro-fading spectrometry. Spectrosc Lett 44:52–62

    Article  CAS  Google Scholar 

  157. Liang H, Lange R, Lucian A, Hyndes P, Townsend J., Hackney S (2011) Development of portable microfading spectrometers for measurement of light sensitivity of materials. In: International Council of Museums, Committee for Conservation (ICOM-CC) triennial conference, Lisbon

    Google Scholar 

  158. Bacci M, Cucci C, Mencaglia AA MA& PS (2004) Calibration and use of photosensitive materials for light monitoring in museums: blue wool standard 1 as a case study. Stud Conserv 49:85–98

    Google Scholar 

  159. Lerwill A, Townsend JH, Thomas J, Hackney S, Caspers C, Liang H (2014) Photochemical colour change for traditional watercolour pigments in low oxygen levels. Stud Conserv 60:15–32

    Article  CAS  Google Scholar 

  160. del Hoyo-Meléndez JM, Mecklenburg MF (2011) The use of micro-fading spectrometry to evaluate the light fastness of materials in oxygen-free environments. Spectrosc Lett 44:113–121

    Article  CAS  Google Scholar 

  161. Łojewski T, Thomas J, Gołąb R, Kawałko J, Łojewska J (2011) Light ageing with simultaneous colorimetry via fiber optics reflection spectrometry. Rev Sci Instrum 82:076102

    Article  PubMed  CAS  Google Scholar 

  162. Morales Merino C, Röhrs S, Meyer F, Marten S, Reiche I (2016) Micro-fading testing on modern ink based pens and contemporary drawings from the Kupferstichkabinett Berlin. Berliner Beiträge zur Archäometrie, Kunsttechnologie und Konserv 24:89–102

    Google Scholar 

  163. del Hoyo-Meléndez JM, Mecklenburg M (2012) Micro-fading spectrometry: a tool for real-time assessment of the light-fastness of dye/textile systems. Fibers Polym 13:1079–1085

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Łojewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Łojewski, T., Łydżba-Kopczyńska, B. (2019). Spectroscopy in the Analysis of Artworks. In: Koleżyński, A., Król, M. (eds) Molecular Spectroscopy—Experiment and Theory. Challenges and Advances in Computational Chemistry and Physics, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-01355-4_16

Download citation

Publish with us

Policies and ethics