Skip to main content

Abstract

Brain tumors are the most common solid tumor in children, and unfortunately, they carry the highest mortality rate of any of the pediatric cancers. The tumor itself can pose significant risk to the patient due to local effects on the central nervous system which can be life threatening if not addressed quickly. In addition, treatment can also pose significant risks to the patient as damage to the brain has a much slower recovery than any other organ in the body. This can have long-term ramifications to the patient’s overall functionality for his or her lifetime.

This chapter will touch on key risks that a pediatric brain tumor patient can have and if quickly addressed can make a significant positive lifelong impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ostrom QT, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro-Oncology. 2016;18(suppl_5):v1–v75.

    Article  Google Scholar 

  2. Ostrom QT, et al. Alex’s lemonade stand foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-Oncology. 2015;16(Suppl 10):x1–x36.

    Article  Google Scholar 

  3. de Blank PM, et al. Years of life lived with disease and years of potential life lost in children who die of cancer in the United States, 2009. Cancer Med. 2015;4(4):608–19.

    Article  Google Scholar 

  4. Smith ER, Madsen JR. Cerebral pathophysiology and critical care neurology: basic hemodynamic principles, cerebral perfusion, and intracranial pressure. Semin Pediatr Neurol. 2004;11(2):89–104.

    Article  Google Scholar 

  5. Lin AL, Avila EK. Neurologic emergencies in the patients with cancer. J Intensive Care Med. 2017;32(2):99–115.

    Article  Google Scholar 

  6. Forsyth PA, Posner JB. Headaches in patients with brain tumors: a study of 111 patients. Neurology. 1993;43(9):1678–83.

    Article  CAS  Google Scholar 

  7. Stocchetti N, et al. Hyperventilation in head injury: a review. Chest. 2005;127(5):1812–27.

    Article  Google Scholar 

  8. Damek DM. Cerebral edema, altered mental status, seizures, acute stroke, leptomeningeal metastases, and paraneoplastic syndrome. Emerg Med Clin North Am. 2009;27(2):209–29.

    Article  Google Scholar 

  9. Pater K, Puskulluoglu M, Zygulska AL. Oncological emergencies: increased intracranial pressure in solid tumours’ metastatic brain disease. Przegl Lek. 2014;71(2):91–4.

    PubMed  Google Scholar 

  10. Glantz MJ, et al. Practice parameter: anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. Report of the quality standards subcommittee of the American Academy of Neurology. Neurology. 2000;54(10):1886–93.

    Article  CAS  Google Scholar 

  11. Kerkhof M, Vecht CJ. Seizure characteristics and prognostic factors of gliomas. Epilepsia. 2013;54(Suppl 9):12–7.

    Article  Google Scholar 

  12. Ruda R, et al. Seizures in low-grade gliomas: natural history, pathogenesis, and outcome after treatments. Neuro-Oncology. 2012;14(Suppl 4):iv55–64.

    Article  CAS  Google Scholar 

  13. Vecht CJ, Kerkhof M, Duran-Pena A. Seizure prognosis in brain tumors: new insights and evidence-based management. Oncologist. 2014;19(7):751–9.

    Article  CAS  Google Scholar 

  14. Cavaliere R, Farace E, Schiff D. Clinical implications of status epilepticus in patients with neoplasms. Arch Neurol. 2006;63(12):1746–9.

    Article  Google Scholar 

  15. Brophy GM, et al. Guidelines for the evaluation and management of status epilepticus. Neurocrit Care. 2012;17(1):3–23.

    Article  Google Scholar 

  16. Rossetti AO, et al. Levetiracetam and pregabalin for antiepileptic monotherapy in patients with primary brain tumors. A phase II randomized study. Neuro-Oncology. 2014;16(4):584–8.

    Article  CAS  Google Scholar 

  17. Pollono D, et al. Spinal cord compression: a review of 70 pediatric patients. Pediatr Hematol Oncol. 2003;20(6):457–66.

    Article  Google Scholar 

  18. Lewis DW, et al. Incidence, presentation, and outcome of spinal cord disease in children with systemic cancer. Pediatrics. 1986;78(3):438–43.

    CAS  PubMed  Google Scholar 

  19. Patchell RA, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet. 2005;366(9486):643–8.

    Article  Google Scholar 

  20. Sylvester RK, Fisher AJ, Lobell M. Cytarabine-induced cerebellar syndrome: case report and literature review. Drug Intell Clin Pharm. 1987;21(2):177–80.

    CAS  PubMed  Google Scholar 

  21. Herzig RH, et al. Cerebellar toxicity with high-dose cytosine arabinoside. J Clin Oncol. 1987;5(6):927–32.

    Article  CAS  Google Scholar 

  22. Kwong YL, Yeung DY, Chan JC. Intrathecal chemotherapy for hematologic malignancies: drugs and toxicities. Ann Hematol. 2009;88(3):193–201.

    Article  CAS  Google Scholar 

  23. Prete A, Corsello SM, Salvatori R. Current best practice in the management of patients after pituitary surgery. Ther Adv Endocrinol Metab. 2017;8(3):33–48.

    Article  Google Scholar 

  24. Fenske W, Allolio B. Clinical review: current state and future perspectives in the diagnosis of diabetes insipidus: a clinical review. J Clin Endocrinol Metab. 2012;97(10):3426–37.

    Article  CAS  Google Scholar 

  25. Loh JA, Verbalis JG. Diabetes insipidus as a complication after pituitary surgery. Nat Clin Pract Endocrinol Metab. 2007;3(6):489–94.

    Article  Google Scholar 

  26. Mortini P, et al. Neurosurgical treatment of craniopharyngioma in adults and children: early and long-term results in a large case series. J Neurosurg. 2011;114(5):1350–9.

    Article  Google Scholar 

  27. Williams C, et al. Hyponatremia with intracranial malignant tumor resection in children. J Neurosurg Pediatr. 2012;9(5):524–9.

    Article  Google Scholar 

  28. Williams CN, et al. The incidence of postoperative hyponatremia and associated neurological sequelae in children with intracranial neoplasms. J Neurosurg Pediatr. 2014;13(3):283–90.

    Article  Google Scholar 

  29. Yee AH, Burns JD, Wijdicks EF. Cerebral salt wasting: pathophysiology, diagnosis, and treatment. Neurosurg Clin N Am. 2010;21(2):339–52.

    Article  Google Scholar 

  30. Hardesty DA, Kilbaugh TJ, Storm PB. Cerebral salt wasting syndrome in post-operative pediatric brain tumor patients. Neurocrit Care. 2012;17(3):382–7.

    Article  Google Scholar 

  31. Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med. 2000;342(21):1581–9.

    Article  CAS  Google Scholar 

  32. Lo AC, et al. Long-term outcomes and complications in patients with craniopharyngioma: the British Columbia Cancer Agency experience. Int J Radiat Oncol Biol Phys. 2014;88(5):1011–8.

    Article  Google Scholar 

  33. Rogers LR, et al. Morphologic magnetic resonance imaging features of therapy-induced cerebral necrosis. J Neuro-Oncol. 2011;101(1):25–32.

    Article  CAS  Google Scholar 

  34. Drezner N, et al. Treatment of pediatric cerebral radiation necrosis: a systematic review. J Neuro-Oncol. 2016;130(1):141–8.

    Article  CAS  Google Scholar 

  35. Sundgren PC, Cao Y. Brain irradiation: effects on normal brain parenchyma and radiation injury. Neuroimaging Clin N Am. 2009;19(4):657–68.

    Article  Google Scholar 

  36. Greene-Schloesser D, et al. Radiation-induced brain injury: a review. Front Oncol. 2012;2:73.

    Article  CAS  Google Scholar 

  37. Sadraei NH, et al. Treatment of cerebral radiation necrosis with bevacizumab: the cleveland clinic experience. Am J Clin Oncol. 2015;38(3):304–10.

    Article  CAS  Google Scholar 

  38. Delishaj D, et al. Bevacizumab for the treatment of radiation-induced cerebral necrosis: a systematic review of the literature. J Clin Med Res. 2017;9(4):273–80.

    Article  CAS  Google Scholar 

  39. Pruitt AA. Central nervous system infections in cancer patients. Semin Neurol. 2004;24(4):435–52.

    Article  Google Scholar 

  40. Pruitt AA. CNS infections in patients with cancer. Continuum (Minneap Minn). 2012;18(2):384–405.

    Google Scholar 

  41. Baldwin KJ, Zivkovic SA, Lieberman FS. Neurologic emergencies in patients who have cancer: diagnosis and management. Neurol Clin. 2012;30(1):101–28. viii

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. Manley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clymer, J., Manley, P.E. (2019). Neuro-oncologic Emergencies. In: Duncan, C., Talano, JA., McArthur, J. (eds) Critical Care of the Pediatric Immunocompromised Hematology/Oncology Patient. Springer, Cham. https://doi.org/10.1007/978-3-030-01322-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01322-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01321-9

  • Online ISBN: 978-3-030-01322-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics