Skip to main content

Solution of the Lorenz Model with Help from the Corresponding Ginzburg-Landau Model

  • Conference paper
  • First Online:

Part of the book series: Trends in Mathematics ((TM))

Abstract

Centre manifold theory, a useful tool in the study of dynamical systems, plays a crucial role in analysing the stability of the system. In the paper the three-dimensional manifold arising in the study of Rayleigh-Bénard-Brinkman convection in enclosures is reduced to a unidimensional manifold using a transformation dictated by the centre manifold theorem. Such a reduction is possible since the Lorenz model is autonomous. The advantage in this procedure is that the intractable Lorenz model gets reduced to a tractable Ginzburg-Landau equation and hence facilitates an analytical study of heat transport.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Carr, J.: Applications of Center Manifold Theory. Applied Mathematical Sciences. Springer-Verlag New York(1982)

    Google Scholar 

  2. Gelfgat, A.Y.: Different modes of Rayleigh-Bénard instability in two and three-dimensional rectangular enclosures. J. Comp. Phy. 156, 300–324(1999)

    Article  Google Scholar 

  3. Guckenheimer, J. Holmes, P. J.: Non-linear oscillations, dynamical systems, and bifurcations of vector fields. Springer Science and Business Media(2013)

    Google Scholar 

  4. Guillet, C. Mare, T. Nguyen, C. T.: Application of a non-linear local analysis method for the problem of mixed convection instability. Int. J. Non Linear Mech. 42, 981–988(2007)

    Article  Google Scholar 

  5. Haragus, M. Iooss, G.: Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems. Springer Science and Business Media(2010)

    Google Scholar 

  6. Henry, D.: Geometric theory of semi-linear parabolic equations. Springer-Verlag New York(1981)

    Chapter  Google Scholar 

  7. Kelley, A.: Stability of the center-stable manifold. J. Math. Anal. Appl. 18, 336–344(1967)

    Article  MathSciNet  Google Scholar 

  8. Kelley, A.: The stable, center-stable, center, center-unstable, unstable manifolds. J. Differential Equations 3, 546–570(1967)

    Article  MathSciNet  Google Scholar 

  9. Knobloch, H. W. Aulbach, B.: The role of center manifolds in ordinary differential equations. Equadiff 5, 179–189(1982)

    MathSciNet  MATH  Google Scholar 

  10. Perko, L.: Differential Equations and Dynamical systems. Springer Science and business media(2013)

    Google Scholar 

  11. Platten, J. K. Marcoux, M. Mojtabi, A.: The Rayleigh-Bénard problem in extremely confined geometries with and without the Soret effect. Comptes Rendus Mecanique 335, 638–654(2007)

    Article  Google Scholar 

  12. Pliss, V. A.: A reduction principle in the theory of stability of motion. Izv. Akad. Nauk S.S.S.R. Mat. Ser. 6, 1297–1324(1964)

    Google Scholar 

  13. Siddheshwar, P. G. Meenakshi, N.: Amplitude equation and heat transport for Rayleigh-Bénard convection in Newtonian liquids with nanoparticles. Int. J. Appl. and Comp. Math. 2, 1–22(2015)

    MATH  Google Scholar 

  14. Sijbrand, J.: Properties of center manifolds. Trans. Amer. Math. Soc. 289, 431–469(1985)

    Article  MathSciNet  Google Scholar 

  15. Scarpellini, B.: Center manifolds of infinite dimensions: Main results and applications. Z. Angew. Math. Phys. 42, 1–32(1991)

    Article  MathSciNet  Google Scholar 

  16. Vanderbauwhede, A. Iooss, G.: Center manifold theory in infinite dimensions. Springer(1992)

    Google Scholar 

  17. Wiggins, S.: Introduction to Applied Nonlinear Dynamical systems and chaos. Springer-Verlag NewYork(1990)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Siddheshwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siddheshwar, P.G., Manjunath, S., Sushma, T.S. (2019). Solution of the Lorenz Model with Help from the Corresponding Ginzburg-Landau Model. In: Rushi Kumar, B., Sivaraj, R., Prasad, B., Nalliah, M., Reddy, A. (eds) Applied Mathematics and Scientific Computing. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-01123-9_6

Download citation

Publish with us

Policies and ethics