Skip to main content

Iterative Interaction Training for Segmentation Editing Networks

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11046))

Included in the following conference series:

Abstract

Automatic segmentation has great potential to facilitate morphological measurements while simultaneously increasing efficiency. Nevertheless often users want to edit the segmentation to their own needs and will need different tools for this. There has been methods developed to edit segmentations of automatic methods based on the user input, primarily for binary segmentations. Here however, we present an unique training strategy for convolutional neural networks (CNNs) trained on top of an automatic method to enable interactive segmentation editing that is not limited to binary segmentation. By utilizing a robot-user during training, we closely mimic realistic use cases to achieve optimal editing performance. In addition, we show that an increase of the iterative interactions during the training process up to ten improves the segmentation editing performance substantially. Furthermore, we compare our segmentation editing CNN (interCNN) to state-of-the-art interactive segmentation algorithms and show a superior or on par performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amrehn, M., et al.: UI-Net: Interactive artificial neural networks for iterative image segmentation based on a user model. arXiv:1709.03450 (2017)

  2. Bloch, N., Madabhushi, A., Huisman, H., et al.: NCI-ISBI 2013 challenge: automated segmentation of prostate structures. The Cancer Imaging Archive (2015)

    Google Scholar 

  3. Criminisi, A., Sharp, T., Blake, A.: GeoS: geodesic image segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 99–112. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_9

    Chapter  Google Scholar 

  4. van Ginneken, B., Kerkstra, S., Litjens, G., Toth, R.: PROMISE12 challenge results (2018). https://promise12.grand-challenge.org/evaluation/results/

  5. Grady, L., Schiwietz, T., Aharon, S., Westermann, R.: Random walks for interactive organ segmentation in two and three dimensions: implementation and validation. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 773–780. Springer, Heidelberg (2005). https://doi.org/10.1007/11566489_95

    Chapter  Google Scholar 

  6. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167 (2015)

  7. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Google Scholar 

  8. Litjens, G., et al.: Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med. Image Anal. 18(2), 359–373 (2014)

    Google Scholar 

  9. Mahadevan, S., Voigtlaender, P., Leibe, B.: Iteratively trained interactive segmentation. arXiv:1805.04398 (2018)

  10. Nickisch, H., Rother, C., Kohli, P., Rhemann, C.: Learning an interactive segmentation system. In: Indian Conference on Computer Vision, Graphics and Image Processing, pp. 274–281. ACM (2010)

    Google Scholar 

  11. Pasquier, D., Lacornerie, T., Vermandel, M., Rousseau, J., Lartigau, E., Betrouni, N., et al.: Automatic segmentation of pelvic structures from magnetic resonance images for prostate cancer radiotherapy. Int. J. Radiat. Oncol. 68(2), 592–600 (2007)

    Google Scholar 

  12. Paszke, A., et al.: Automatic differentiation in pytorch. In: NIPS-W (2017)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Rother, C., Kolmogorov, V., Blake, A.: GrabCut: interactive foreground extraction using iterated graph cuts. In: ACM Transactions on Graphics (TOG), vol. 23, pp. 309–314. ACM (2004)

    Google Scholar 

  15. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Tian, Z., Liu, L., Zhang, Z., Fei, B.: PSNet: prostate segmentation on MRI based on a convolutional neural network. J. Med. Imaging 5(2), 021208 (2018)

    Article  Google Scholar 

  17. Toth, R., et al.: Accurate prostate volume estimation using multifeature active shape models on T2-weighted MRI. Acad. Radiol. 18(6), 745–754 (2011)

    Google Scholar 

  18. Vos, P., Barentsz, J., Karssemeijer, N., Huisman, H.: Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis. Phys. Med. Biol. 57(6), 1527 (2012)

    Article  Google Scholar 

  19. Wang, G., Li, W., Zuluaga, M.A., Pratt, R., Patel, P.A., Aertsen, M., et al.: Interactive medical image segmentation using deep learning with image-specific fine-tuning. IEEE Trans. Med. Imaging (2018)

    Google Scholar 

  20. Wang, G., et al.: DeepIGeoS: a deep interactive geodesic framework for medical image segmentation. IEEE Trans. Pattern Anal. (2018)

    Google Scholar 

  21. Zhu, Q., Du, B., Turkbey, B., Choyke, P.L., Yan, P.: Deeply-supervised CNN for prostate segmentation. In: International Joint Conference on Neural Networks, pp. 178–184. IEEE (2017)

    Google Scholar 

Download references

Acknowledgements

We thank the Swiss Data Science Center (project C17-04 deepMICROIA) for funding and acknowledge NVIDIA for GPU support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustav Bredell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bredell, G., Tanner, C., Konukoglu, E. (2018). Iterative Interaction Training for Segmentation Editing Networks. In: Shi, Y., Suk, HI., Liu, M. (eds) Machine Learning in Medical Imaging. MLMI 2018. Lecture Notes in Computer Science(), vol 11046. Springer, Cham. https://doi.org/10.1007/978-3-030-00919-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00919-9_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00918-2

  • Online ISBN: 978-3-030-00919-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics