Skip to main content

G Protein-Coupled Receptor-Mediated Calcium Signaling in Astrocytes

  • Chapter
  • First Online:

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

Abstract

Astrocytes express a large variety of G protein-coupled receptors (GPCRs) which mediate the transduction of extracellular signals into intracellular calcium responses. This transduction is provided by a complex network of biochemical reactions which mobilizes a wealth of possible calcium-mobilizing second messenger molecules. Inositol 1,4,5-trisphosphate is probably the best known of these molecules whose enzymes for its production and degradation are nonetheless calcium-dependent. We present a biophysical modeling approach based on the assumption of Michaelis–Menten enzyme kinetics, to effectively describe GPCR-mediated astrocytic calcium signals. Our model is then used to study different mechanisms at play in stimulus encoding by shape and frequency of calcium oscillations in astrocytes.

Eshel Ben-Jacob: Deceased June 5, 2015.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2-AG:

2-Arachidonoylglycerol

CaMKII:

\(\mathrm{{Ca^{2+}}}\) /calmodulin-dependent protein kinase II

CICR:

Calcium-induced calcium release

cPKC:

Conventional protein kinase C

DAG:

Diacylglycerol

DAGK (DAGL):

DAG kinase (lipase)

ER:

Endoplasmic reticulum

GPCR:

G protein-coupled receptor

GTP (GDP) :

Guanosine-5’-triphosphate (guanosine diphosphate)

\(\mathrm{{IP}_3}\) (\(\mathrm{{IP}_3}\) R) :

Inositol 1,4,5-trisphosphate (receptor)

\(\mathrm{{IP}_3}\) 3K:

\(\mathrm{{IP}_3}\) 3-kinase

IP-5P:

Inositol polyphosphate 5-phosphatase

\(\mathrm{{PIP}_2}\) :

Phosphatidylinositol 4,5-bisphosphate

PLC\(\upbeta \)  (PLC\(\updelta \)):

Phospholipase C\(\upbeta \) (C\(\updelta \))

References

  • Allen NJ, Barres BA (2009) Glia–more than just brain glue. Nature 457:675–677

    Article  CAS  PubMed  Google Scholar 

  • Ananthanarayanan B, Stahelin RV, Digman MA, Cho W (2003) Activation mechanisms of conventional protein kinase C isoforms are determined by the ligand affinity and conformational flexibility of their C1 domains. J Biol Chem 278(47):46886–46894

    Article  CAS  PubMed  Google Scholar 

  • Aronica E, Gorter JA, Ijlst-Keizers H, Rozemuller AJ, Yankaya B, Leenstra S, Troost D (2003) Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci 17:2106–2118

    Article  PubMed  Google Scholar 

  • Barbour B (2001) An evaluation of synapse independence. J Neurosci 21(20):7969–7984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bekar LK, He W, Nedergaard M (2008) Locus coeruleus \(\alpha \)-adrenergic-mediated activation of cortical astrocytes in vivo. Cereb Cortex 18(12):2789–2795

    Article  PubMed  PubMed Central  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341(6239):197–205

    Article  CAS  PubMed  Google Scholar 

  • Bindocci E, Savtchouk I, Liaudet N, Becker D, Carriero G, Volterra A (2017) Three-dimensional Ca\(^{2+}\) imaging advances understanding of astrocyte biology. Science 356:6339

    Article  CAS  Google Scholar 

  • Brabet I, Mary S, Bockaert J, Pin J (1995) Phenylglycine derivatives discriminate between mGluR1- and mGluR5-mediated responses. Neuropharmacology 34(8):895–903

    Article  CAS  PubMed  Google Scholar 

  • Brambilla R, Burnstock G, Bonazzi A, Ceruti S, Cattabeni F, Abbracchio MP (1999) Cyclo-oxygenase-2 mediates P2Y receptor-induced reactive astrogliosis. Br J Pharmacol 126(3):563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruner G, Murphy S (1990) ATP-evoked arachidonic acid mobilization in astrocytes is via a P2Y-purinergic receptor. J Neurochem 55(5):1569–1575

    Article  CAS  PubMed  Google Scholar 

  • Camello C, Lomax R, Petersen OH, Tepikin AV (2002) Calcium leak from intracellular stores - the enigma of calcium signalling. Cell Calcium 32(5–6):355–361

    Article  CAS  PubMed  Google Scholar 

  • Carmignoto G (2000) Reciprocal communication systems between astrocytes and neurones. Prog Neurobiol 62:561–581

    Article  CAS  PubMed  Google Scholar 

  • Carrasco S, Mérida I (2007) Diacylglycerol, when simplicity becomes complex. Trends Biochem Sci 32(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Changeux J, Edelstein SJ (2005) Allosteric mechanisms of signal transduction. Science 308(5727):1424–1428

    Article  CAS  PubMed  Google Scholar 

  • Chen N, Sugihara H, Sharma J, Perea G, Petravicz J, Le C, Sur M (2012) Nucleus basalis enabled stimulus specific plasticity in the visual cortex is mediated by astrocytes. Proc Natl Acad Sci USA 109(41):E2832–E2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements JD, Lester RAJ, Tong G, Jahr CE, Westbrook GL (1992) The time course of glutamate in the synaptic cleft. Science 258:1498–1501

    Article  CAS  PubMed  Google Scholar 

  • Clewley R (2012) Hybrid models and biological model reduction with PyDSTool. PLoS Comput Biol 8(8):e1002628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Codazzi F, Teruel MN, Meyer T (2001) Control of astrocyte Ca\(^{2+}\) oscillations and waves by oscillating translocation and activation of protein kinase C. Curr Biol 11(14):1089–1097

    Article  CAS  PubMed  Google Scholar 

  • Communi D, Dewaste V, Erneux C (1999) Calcium-calmodulin-dependent protein kinase II and protein kinase C-mediated phosphorylation and activation of D-myo-inositol 1,4,5-trisphosphate 3-kinase B in astrocytes. J Biol Chem 274:14734–14742

    Article  CAS  PubMed  Google Scholar 

  • Communi D, Gevaert K, Demol H, Vandekerckhove J, Erneux C (2001) A novel receptor-mediated regulation mechanism of type I inositol polyphosphate 5-phosphatase by calcium/calmodulin-dependent protein kinase II phosphorylation. J Biol Chem 276(42):38738–38747

    Article  CAS  PubMed  Google Scholar 

  • Communi D, Vanweyenberg V, Erneux C (1995) Molecular study and regulation of D-myo-inositol 1,4,5-trisphopshate 3-kinase. Cell Signal 7(7):643–650

    Article  CAS  PubMed  Google Scholar 

  • Communi D, Vanweyenberg V, Erneux C (1997) d-myo-inositol 1,4,5-trisphosphate 3-kinase A is activated by receptor activation through a calcium:calmodulin-dependent protein kinase II phosphorylation mechanism. EMBO J 16(8):1943–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly T, Bansal V, Bross T, Irvine R, Majerus P (1987) The metabolism of tris-and tetraphosphates of inositol by 5-phosphomonoesterase and 3-kinase enzymes. J Biol Chem 262(5):2146–2149

    CAS  PubMed  Google Scholar 

  • Cristóvão-Ferreira S, Navarro G, Brugarolas M, Pérez-Capote K, Vaz SH, Fattorini G, Conti F, Lluis C, Ribeiro JA, McCormick PJ, Casadó V, Franco R, Sebastião AM (2013) A\(_1\)R-A\(_{2\rm {A}}\)R heteromers coupled to G\(_s\) and G\(_{i/0}\) proteins modulate GABA transport into astrocytes. Purinergic Signalling 9(3):433–449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Csordàs G, Thomas AP, Hajnóczky G (1999) Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 18(1):96–108

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Prokin I, Xu H, Delord B, Genet S, Venance L, Berry H (2016) Endocannabinoid dynamics gate spike-timing dependent depression and potentiation. elife 5:e13185

    Google Scholar 

  • Daggett L, Sacaan A, Akong M, Rao S, Hess S, Liaw C, Urrutia A, Jachec C, Ellis S, Dreessen J (1995) Molecular and functional characterization of recombinant human metabotropic glutamate receptor subtype 5. Neuropharmacology 34(8):871–886

    Article  CAS  PubMed  Google Scholar 

  • De Konick P, Schulman H (1998) Sensitivity of CaM kinase II to the frequency of Ca\(^{2+}\) oscillations. Science 279:227–230

    Article  Google Scholar 

  • De Pittà M, Goldberg M, Volman V, Berry H, Ben-Jacob E (2009) Glutamate-dependent intracellular calcium and IP\(_{3}\) oscillating and pulsating dynamics in astrocytes. J Biol Phys 35:383–411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Pittà M, Volman V, Berry H, Parpura V, Liaudet N, Volterra A, Ben-Jacob E (2013) Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comp Neurosci 6:98

    Google Scholar 

  • Di Castro M, Chuquet J, Liaudet N, Bhaukaurally K, Santello M, Bouvier D, Tiret P, Volterra A (2011) Local Ca\(^{2+}\) detection and modulation of synaptic release by astrocytes. Nat Neurosci 14:1276–1284

    Article  CAS  PubMed  Google Scholar 

  • Ding F, ODonnell J, Thrane AS, Zeppenfeld D, Kang H, Xie L, Wang F, Nedergaard M (2013) \(\alpha _1\)-Adrenergic receptors mediate coordinated Ca\(^{2+}\) signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54(6):387–394

    Article  CAS  PubMed  Google Scholar 

  • Doengi M, Hirnet D, Coulon P, Pape H-C, Deitmer JW, Lohr C (2009) GABA uptake-dependent Ca\(^{2+}\) signaling in developing olfactory bulb astrocytes. Proc National Acad Sci 106(41):17570–17575

    Article  CAS  Google Scholar 

  • Dominguez CL, Floyd DH, Xiao A, Mullins GR, Kefas BA, Xin W, Yacur MN, Abounader R, Lee JK, Wilson GM, Harris TE, Purow BW (2013) Diacylglycerol kinase \(\alpha \) is a critical signaling node and novel therapeutic target in glioblastoma and other cancers. Cancer Discov 3(7):782–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupont G, Erneux C (1997) Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities on Ca\(^{2+}\) oscillations. Cell Calcium 22(5):321–331

    Article  CAS  PubMed  Google Scholar 

  • Erneux C, Govaerts C, Communi D, Pesesse X (1998) The diversity and possible functions of the inositol polyphosphate 5-phosphatases. Biochim Biophys Acta 1436(1–2):185–189

    Article  CAS  PubMed  Google Scholar 

  • Essen L, Perisic O, Cheung R, Katan M, Williams RL (1996) Crystal structure of a mammalian phosphoinositide-specific phospholipase C. Nature 380:595–602

    Article  CAS  PubMed  Google Scholar 

  • Essen L, Perisic O, Lunch DE, Katan M, Williams RL (1997) A ternary metal binding site in the C2 domain of phosphoinositide-specific phospholipase C-\(\updelta \)1. Biochemistry (Mosc) 37(10):4568–4680

    Google Scholar 

  • Fam S, Gallagher C, Salter M (2000) P2Y\(_{1}\) purinoceptor-mediated Ca\(^{2+}\) signaling and Ca\(^{2+}\) wave propagation in dorsal spinal cord astrocytes. J Neurosci20(8):2800–2808

    Google Scholar 

  • Fisher SK (1995) Homologous and heterologous regulation of receptor-stimulated phosphoinosited hydrolysis. Eur J Pharmacol 288:231–250

    Article  CAS  PubMed  Google Scholar 

  • Gallo V, Ghiani A (2000) Glutamate receptors in glia: new cells, new inputs and new functions. Trends Pharm Sci 21:252–258

    Article  CAS  PubMed  Google Scholar 

  • Giaume C, Marin P, Cordier J, Glowinski J, Premont J (1991) Adrenergic regulation of intercellular communications between cultured striatal astrocytes from the mouse. Proc Nat Acad Sci 88(13):5577–5581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golovina VA, Blaustein MP (1997) Spatially and functionally distinct Ca\(^{2+}\) stores in sarcoplasmic and endoplasmic reticulum. Science 275:1643–1648

    Article  CAS  PubMed  Google Scholar 

  • Griner EM, Kazanietz MG (2007) Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 7(4)

    Article  CAS  PubMed  Google Scholar 

  • Hanson PI, Meyer T, Stryer L, Schulman H (1994) Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron 12:943–956

    Article  CAS  PubMed  Google Scholar 

  • Hardy A, Conley P, Luo J, Benovic J, Poole A, Mundell S (2005) P2Y1 and P2Y12 receptors for ADP desensitize by distinct kinase-dependent mechanisms. Blood 105(9):3552–3560

    Article  CAS  PubMed  Google Scholar 

  • Heller JP, Rusakov DA (2015) Morphological plasticity of astroglia: understanding synaptic microenvironment. Glia 63(12):2133–2151

    Article  PubMed  PubMed Central  Google Scholar 

  • Hermosura M, Takeuchi H, Fleig A, Riley A, Potter B, Hirata M, Penner R (2000) InsP4 facilitates store-operated calcium influx by inhibition of InsP3 5-phosphatase. Nature 408(6813):735–740

    Article  CAS  PubMed  Google Scholar 

  • Höfer T, Venance L, Giaume C (2002) Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J Neurosci 22(12):4850–4859

    Article  PubMed  PubMed Central  Google Scholar 

  • Irvine RF, Letcher AJ, Heslop JP, Berridge MJ (1986) The inositol tris/tetrakisphopshate pathway-demonstration of Ins(1,4,5)P\(_{3}\) 3-kinase activity in animal tissues. Nature 320:631–634

    Article  CAS  PubMed  Google Scholar 

  • Irvine RF, Schell MJ (2001) Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol 2(5):327–338

    Article  CAS  PubMed  Google Scholar 

  • Jennings A, Tyurikova O, Bard L, Zheng K, Semyanov A, Henneberger C, Rusakov DA (2017) Dopamine elevates and lowers astroglial Ca\(^{2+}\) through distinct pathways depending on local synaptic circuitry. Glia 65(3):447–459

    Article  PubMed  Google Scholar 

  • Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M, Matute C, Tonello F, Gundersen V, Volterra A (2007) Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10(3):331–339

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1(8):683–692

    Article  CAS  PubMed  Google Scholar 

  • Kang M, Othmer H (2009) Spatiotemporal characteristics of calcium dynamics in astrocytes. Chaos 19(3):037116

    Article  CAS  Google Scholar 

  • Kanoh H, Kondoh H, Ono T (1983) Diacylglycerol kinase from pig brain. Purification and phospholipid dependencies. J Biol Chem 258(3):1767–1774

    CAS  PubMed  Google Scholar 

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471

    Article  Google Scholar 

  • Keener J, Sneyd J (2008) Mathematical physiology: I:  Cellular physiology vol 1. 2nd edn. Springer

    Google Scholar 

  • Kolodziej SJ, Hudmon A, Waxham MN, Stoops JK (2000) Three-dimensional reconstructions of calcium/calmodulin-dependent (CaM) kinase II\(\upalpha \) and truncated CaM kinase II\(\upalpha \) reveal a unique organization for its structural core and functional domains. J Biol Chem 275(19):14354–14359

    Google Scholar 

  • Lemon G, Gibson WG, Bennett MR (2003) Metabotropic receptor activation, desensitization and sequestration - I: modelling calcium and inositol 1,4,5-trisphosphate dynamics following receptor activation. J Theor Biol 223(1):93–111

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Rinzel J (1994) Equations for InsP\(_{3}\) receptor-mediated [Ca\(^{2+}\)]\(_{i}\) oscillations derived from a detailed kinetic model: A Hodgkin-Huxley like formalism. J Theor Biol 166:461–473

    Article  CAS  PubMed  Google Scholar 

  • Losi G, Mariotti L, Carmignoto G (2014) GABAergic interneuron to astrocyte signalling: a neglected form of cell communication in the brain. Phil Trans Royal Soc B: Biol Sci 369(1654):20130609

    Article  CAS  Google Scholar 

  • Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22(7):368–376

    Article  CAS  PubMed  Google Scholar 

  • Mariotti L, Losi G, Sessolo M, Marcon I, Carmignoto G (2016) The inhibitory neurotransmitter GABA evokes long-lasting Ca\(^{2+}\) oscillations in cortical astrocytes. Glia 64(3):363–373

    Article  PubMed  Google Scholar 

  • Martín R, Bajo-Grañeras R, Moratalla R, Perea G, Araque A (2015) Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science 349(6249):730–734

    Article  PubMed  CAS  Google Scholar 

  • Mérida I, Ávila-Flores A, Merino E (2008) Diacylglycerol kinases: at the hub of cell signalling. Biochem J 409(1):1–18

    Article  PubMed  Google Scholar 

  • Min R, Nevian T (2012) Astrocyte signaling controls spike timing-dependent depression at neocortical synapses. Nat Neurosci 15(5):746–753

    Article  CAS  PubMed  Google Scholar 

  • Mishra J, Bhalla US (2002) Simulations of inositol phosphate metabolism and its interaction with Ins P\(_{3}\)-mediated calcium release. Biophys J 83:1298–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosior M, Epand RM (1994) Characterization of the calcium-binding site that regulates association of protein kinase C with phospholipid bilayers. J Biol Chem 269(19):13798–13805

    CAS  PubMed  Google Scholar 

  • Nakahara K, Okada M, Nakanishi S (1997) The metabotropic glutamate receptor mGluR5 induces calcium oscillations in cultured astrocytes via protein kinase C phosphorylation. J Neurochem 69(4):1467–1475

    Article  CAS  PubMed  Google Scholar 

  • Navarrete M, Araque A (2008) Endocannabinoids mediate neuron-astrocyte communication. Neuron 57(6):883–893

    Article  CAS  PubMed  Google Scholar 

  • Navarrete M, Perea G, de Sevilla D, Gómez-Gonzalo M, Núñez A, Martín E, Araque A (2012) Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol 10(2):e1001259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9:484–496

    Article  CAS  PubMed  Google Scholar 

  • Oancea E, Meyer T (1998) Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 95:307–318

    Article  CAS  PubMed  Google Scholar 

  • Ochocka A-M, Pawelczyk T (2003) Isozymes delta of phosphoinositide-specific phospholipase C and their role in signal transduction in the cell. Acta Biochim Pol 50(4):1097–1110

    CAS  PubMed  Google Scholar 

  • Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5(12):993–996

    Article  CAS  PubMed  Google Scholar 

  • Panatier A, Vallée J, Haber M, Murai K, Lacaille J, Robitaille R (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146:785–798

    Article  CAS  PubMed  Google Scholar 

  • Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci USA 97(15):8629–8634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parri HR, Crunelli V (2003) The role of Ca\(^{2+}\) in the generation of spontaneous astrocytic Ca\(^{2+}\) oscillations. Neuroscience 120(4):979–992

    Article  CAS  PubMed  Google Scholar 

  • Pawelczyk T, Matecki A (1997) Structural requirements of phospholipase C \(\updelta 1\) for regulation by spermine, sphingosine and sphingomyelin. Eur J Biochem 248:459–465

    Google Scholar 

  • Perea G, Araque A (2005a) Synaptic regulation of the astrocyte calcium signal. J Neur Transm 112:127–135

    Article  PubMed  CAS  Google Scholar 

  • Pivneva T, Haas B, Reyes-Haro D, Laube G, Veh R, Nolte C, Skibo G, Kettenmann H (2008) Store-operated Ca\(^{2+}\) entry in astrocytes: different spatial arrangement of endoplasmic reticulum explains functional diversity in vitro and in situ. Cell Calcium 43(6):591–601

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Franco J, Bare D, Caenepeel S, Nani A, Fill M, Mignery G (2000) Single-channel function of recombinant type 2 inositol 1,4,5-trisphosphate receptor. Biophys J 79(3):1388–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80(4):1291–1335

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG, Bae YS (1997) Regulation of phosphoinositide-specific phospholipase C isozymes. J Biol Chem 272:15045–15048

    Article  CAS  PubMed  Google Scholar 

  • Rosenberger TA, Farooqui AA, Horrocks LA (2007) Bovine brain diacylglycerol lipase: substrate specificity and activation by cyclicAMP-dependent protein kinase. Lipids 42(3):187–195

    Article  CAS  PubMed  Google Scholar 

  • Ryu SH, Kin U, Wahl MI, Brown Ab, Carpenter G, Huang K, Rhee SG (1990) Feedback regulation of phospholipase C-\(\upbeta \) by protein kinase C. J Biol Chem 265(29):17941–17945

    Google Scholar 

  • Sakane F, Yamada K, Imai S-I, Kanoh H (1991) Porcine 80-kDa diacylglycerol kinase is a calcium-binding and calcium/phospholipid-dependent enzyme and undergoes calcium-dependent translocation. J Biol Chem 266(11):7096–7100

    CAS  PubMed  Google Scholar 

  • Santello M, Volterra A (2012) TNF\(\upalpha \) in synaptic function: switching gears. Trends Neurosci 35(10):638–647

    Google Scholar 

  • Serrano A, Haddjeri N, Lacaille J, Robitaille R (2006) GABAergic network activation of glial cells underlies heterosynaptic depression. J Neurosci 26(20):5370–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigetomi E, Kracun S, Sovfroniew MS, Khakh BS (2010) A genetically targeted optical sensor to monitor calcium signals in astrocyte processes. Nat Neurosci 13(6):759–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinohara T, Michikawa T, Enomoto M, Goto J, Iwai M, Matsu-ura T, Yamazaki H, Miyamoto A, Suzuki A, Mikoshiba K (2011) Mechanistic basis of bell-shaped dependence of inositol 1,4,5-trisphosphate receptor gating on cytosolic calcium. Proc Natl Acad Sci USA 108(37):15486–15491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinomura T, Asaoka Y, Oka M, Yoshida K, Nishizuka Y (1991) Synergistic action of diacylglycerol and unsaturated fatty acid for protein kinase C activation: its possible implications. Proc Natl Acad Sci USA 88:5149–5153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sim SS, Kim JW, Rhee SG (1990) Regulation of D-myo-inositol 1,4,5-trisphosphate 3-kinase by cAMP-dependent protein kinase and protein kinase C. J Biol Chem 265:10367–10372

    Google Scholar 

  • Sims CE, Allbritton NL (1998) Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate by the oocytes of Xenopus laevis. J Biol Chem 273(7):4052–4058

    Article  CAS  PubMed  Google Scholar 

  • Skeel RD (1986) Construction of variable-stepsize multistep formulas. Mathem Comput 47(176):503–510

    Article  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    Article  PubMed  Google Scholar 

  • Stryer L (1999) Biochemistry, 4th edn. W. H. Freeman and Company, New York

    Google Scholar 

  • Suh P-G, Park J-I, Manzoli L, Cocco L, Peak JC, Katan M, Fukami K, Kataoka T, Yun S, Ryu SH (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 41(6):415–34

    Article  CAS  PubMed  Google Scholar 

  • Sun W, McConnell E, Pare J-F, Xu Q, Chen M, Peng W, Lovatt D, Han X, Smith Y, Nedergaard M (2013) Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339(6116):197–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Moriyoshi E, Tsuchiya D, Jingami H (2004) Negative cooperativity of glutamate binding in the dimeric metabotropic glutamate receptor subtype I. J Biol Chem 279(34):35526–35534

    Article  CAS  PubMed  Google Scholar 

  • Takata N, Mishima T, Hisatsune C, Nagai T, Ebisui E, Mikoshiba K, Hirase H (2011) Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci 31(49):18155–18165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel G, Czernik AJ, Gorelick F, Nairn AC, Greengard P (1988) Ca\(^{2+}\)/calmodulin-dependent protein kinase II: Identification of threonine-286 as the autophosphorylation site in the \(\upalpha \) subunit associated with the generation of Ca\(^{2+}\)-independent activity. Proc Natl Acad Sci USA 85:6337–6341

    Google Scholar 

  • Togashi S, Takazawa K, Endo T, Erneux C, Onaya T (1997) Structural identification of the myo-inositol 1,4,5-trisphosphate-binding domain in rat brain inositol 1,4,5-trisphopshate 3-kinase. Biochem J 326:221–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaarmann A, Gandhi S, Abramov AY (2010) Dopamine induces Ca\(^{2+}\) signaling in astrocytes through reactive oxygen species generated by monoamine oxidase. J Biol Chem 285(32):25018–25023

    Google Scholar 

  • van der Bend RL, de Widt J, Hilkmann H, Van Blitterswijk WJ (1994) Diacylglycerol kinase in receptor-stimulated cells converts its substrate in a topologically restricted manner. J Biol Chem 269(6):4098–4102

    PubMed  Google Scholar 

  • Verjans B, Lecocq R, Moreau C, Erneux C (1992) Purification of bovine brain inositol-1,4,5-trisphosphate 5-phosphatase. Eur J Biochem 204:1083–1087

    Article  CAS  PubMed  Google Scholar 

  • Violin JD, Crombie AL, Soergel DG, Lark MW (2014) Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol Sci 35(7):308–316

    Article  CAS  PubMed  Google Scholar 

  • Volterra A, Liaudet N, Savtchouk I (2014) Astrocyte Ca\(^{2+}\) signalling: an unexpected complexity. Nat Rev Neurosci 15:327–334

    Article  CAS  PubMed  Google Scholar 

  • Walter L, Dinh T, Stella N (2004) ATP induces a rapid and pronounced increase in 2-arachidonoylglycerol production by astrocytes, a response limited by monoacylglycerol lipase. J Neurosci 24(37):8068–8074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Lou N, Xu Q, Tian G-F, Peng WG, Han X, Kang J, Takano T, Nedergaard M (2006) Astrocytic Ca\(^{2+}\) signaling evoked by sensory stimulation in vivo. Nat Neurosci 9(6):816–823

    Article  CAS  PubMed  Google Scholar 

  • Weiss JN (1997) The Hill equation revisited: uses and misuses. FASEB J 11:835–841

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Sakane F, Matsushima N, Kanoh H (1997) EF-hand motifs of \(\upalpha \), \(\upbeta \) and \(\upgamma \) isoforms of diacylglycerol kinase bind calcium with different affinities and conformational changes. Biochem J 321(1):59–64

    Google Scholar 

  • Zheng K, Bard L, Reynolds JP, King C, Jensen TP, Gourine AV, Rusakov DA (2015) Time-resolved imaging reveals heterogeneous landscapes of nanomolar Ca\(^{2+}\) in neurons and astroglia. Neuron 88(2):277–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorec R, Araque A, Carmignoto G, Haydon P, Verkhratsky A, Parpura V (2012) Astroglial excitability and gliotransmission: an appraisal of Ca\(^{2+}\) as a signaling route. ASN Neuro 4(2):e00080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

MDP was supported by an FP7 Marie Skłodowska-Curie International Outgoing Fellowship by the European Commission (Project 331486 “Neuron-Astro-Nets”), and he currently is a Junior Leader Postdoctoral Fellow sponsored by “la Caixa” Banking Foundation (LCF/BQ/LI18/11630006). MDP also acknowledge the support by the Basque Government through the BERC 2018–2021 program and by the Spanish Ministry of Science, Innovation and Universities: BCAM Severo Ochoa accreditation SEV-2017-0718.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio De Pittà .

Editor information

Editors and Affiliations

Appendices

Appendix 1 Arguments of Chemical Kinetics

1.1 Appendix 1.1 The Hill Equation

In biochemistry, the binding reaction of n molecules of a ligand L to a receptor macromolecule R, i.e.,

$$\begin{aligned} \mathrm{{R + }}\,n\,\mathrm{{L}} \mathop \rightleftharpoons ^{k_{f}}_{k_{b}} \mathrm{{RL}}_n \end{aligned}$$
(5.42)

can be mathematically described by the differential equation

$$\begin{aligned} \frac{\mathrm {d}\mathrm{{[RL}}_n]}{\mathrm {d}t}=k_{f}\mathrm{{[R][L]}}^n-k_{b}\mathrm{{[RL}}_n] \end{aligned}$$
(5.43)

where \(k_{f}\)\(k_{b}\) denote the forward (binding) and backward (unbinding) reaction rates, respectively. At equilibrium,

$$\begin{aligned} 0 = k_{f}\mathrm{{[R][L]}}^n-k_{b}\mathrm{{[RL}}_n] \Rightarrow \mathrm{{[RL}}_n]=\frac{\mathrm{{[R][L]}}^n}{K_d} \end{aligned}$$
(5.44)

where \(K_{d}=k_{b}/k_{f}\) is the dissociation constant of the binding reaction 5.42. Then, the fraction of bound receptor macromolecules with respect to the total receptor macromolecules can be expressed by the Hill equation (Stryer 1999)

(5.45)

where the function \(\mathcal {H}_{n}\left( \mathrm{{[L]}},K_{0.5}\right) \) denotes the sigmoid (Hill) function \(\mathrm{{[L]}}^{n}\mathrm{{ / ([L]}}^{n}\mathrm{{ + K_{0.5}}}^{n})\), and \(K_{0.5} = \root n \of {K_{d}}\) is the receptor affinity for the ligand L and corresponds to the ligand concentration for which half of the receptor macromolecules are bound (i.e., the midpoint of the \(\mathcal {H}_{n}\left( \mathrm{{[L]}},K_{0.5}\right) \) curve). The sigmoid shape of \(\mathcal {H}_{n}\left( \mathrm{{[L]}},K_{0.5}\right) \) denotes saturation kinetics in the binding reaction 5.42, that is, for \(\mathrm{{[L]}}\gg K_{0.5}\) almost all the receptor molecules are bound to the ligand, so that the fraction of bound receptor molecules does not essentially change for an increase of \(\mathrm {[L]}\).

The coefficient n, also known as Hill coefficient, quantifies the cooperativity among multiple ligand-binding sites. A Hill coefficient \(n>1\) denotes positively cooperative binding, whereby once one ligand molecule is bound to the receptor macromolecule, the affinity of the latter for other ligand molecules increases. Conversely, a value of \(n<1\) denotes negatively cooperative binding, namely when binding of one ligand molecule to the receptor decreases the affinity of the latter to bind further ligand molecules. Finally, a coefficient \(n=1\) denotes completely independent binding when the affinity of the receptor to ligand molecules is not affected by its state of occupation by the latter.

For unimolecular reactions, \(n=1\) coincides with the number of binding sites of the receptor. For multimolecular reactions involving \(\eta > 1\) ligand molecules instead, the Hill coefficient, in general, only loosely estimates the number of binding sites, being \(n\le \eta \) (Weiss 1997). This follows from the hypothesis of total allostery that is implicit in the reaction 5.42, whereby the Hill function is a very simplistic way to model cooperativity. It describes in fact the limit case where affinity is 0 if no ligand is bound and infinite as soon as one receptor binds. That is, only two states are possible: free receptor and receptor with all ligand bound. More realistic descriptions are available in literature, such as the Monod–Wyman–Changeux (MWC) model, but they yield much more complex equations and more parameters (Changeux and Edelstein 2005).

1.2 Appendix 1.2 The Michaelis–Menten Model of Enzyme Kinetics

The Michaelis–Menten model of enzyme kinetics is one of the simplest and best-known models to describe the kinetics of enzyme-catalyzed chemical reactions. In general enzyme-catalyzed reactions involve an initial binding reaction of an enzyme \(\mathrm{{E}}\) to a substrate \(\mathrm{{S}}\) to form a complex \(\mathrm{{ES}}\). The latter is then converted into a product \(\mathrm{{P}}\) and the free enzyme by a further reaction that is mediated by the enzyme itself and can be quite complex and involve several intermediate reactions. However, there is typically one rate-determining enzymatic step that allows this reaction to be modeled as a single catalytic step with an apparent rate constant \(k_{\mathrm {cat}}\). The resulting kinetic scheme thus reads

$$\begin{aligned} \mathrm{{E + S}} \mathop \rightleftharpoons ^{k_{f}}_{k_{b}} \mathrm{{ES}} \xrightarrow {k_{\mathrm {cat}}} \mathrm{{P + E}} \end{aligned}$$
(5.46)

By law of mass action, the above kinetic scheme gives rise to four differential equations (Stryer 1999):

$$\begin{aligned} \frac{\mathrm {d}\mathrm{{[S]}}}{\mathrm {d}t}&= -k_{f}\mathrm{{[E][S]}} + k_{b}\mathrm{{[ES]}}\end{aligned}$$
(5.47a)
$$\begin{aligned} \frac{\mathrm {d}\mathrm{{[E]}}}{\mathrm {d}t}&= -k_{f}\mathrm{{[E][S]}} + k_{b}\mathrm{{[ES]}} + k_{\mathrm {cat}}\mathrm{{[ES]}} \end{aligned}$$
(5.47b)
$$\begin{aligned} \frac{\mathrm {d}\mathrm{{[ES]}}}{\mathrm {d}t}&= k_{f}\mathrm{{[E][S]}} - k_{b}\mathrm{{[ES]}} - k_{\mathrm {cat}}\mathrm{{[ES]}} \end{aligned}$$
(5.47c)
$$\begin{aligned} \frac{\mathrm {d}\mathrm{{[P]}}}{\mathrm {d}t}&= k_{\mathrm {cat}}\mathrm{{[ES]}} \end{aligned}$$
(5.47d)

In the Michaelis–Menten model, the enzyme is a catalyst, namely it only facilitates the reaction whereby \(\mathrm{{S}}\) is transformed into \(\mathrm{{P}}\), hence its total concentration \(\mathrm{{[E]_T=[E] + [ES]}}\) must be preserved. This is indeed apparent by the sum of the second and the third equations above, since: \(\frac{\mathrm {d}(\mathrm{{[E] + [ES]}})}{\mathrm {d}t}=\frac{\mathrm {d}\mathrm{{[E]_T}}}{\mathrm {d}t}=0\Rightarrow \mathrm{{[E]_T}} = \text {const}\).

The system of Eq. 5.47 can be solved for the products \(\mathrm{{P}}\) as a function of the concentration of the substrate \(\mathrm{{[S]}}\). A first solution assumes instantaneous chemical equilibrium between the substrate \(\mathrm{{S}}\) and the complex \(\mathrm{{ES}}\), i.e., \(\frac{\mathrm {d}\mathrm{{[S]}}}{\mathrm {d}t}=0\), whereby the initial binding reaction can be equivalently described by a Hill equation (Keener and Sneyd 2008), i.e.,

$$\begin{aligned} \frac{\mathrm{{[ES]}}}{\mathrm{{[E]_T}}} = \frac{\mathrm{{[S]}}}{\mathrm{{[S]}} + K_{d}} \Rightarrow \mathrm{{[ES]}} = \frac{\mathrm{{[E]_T [S]}}}{\mathrm{{[S]}} + K_{d}} \end{aligned}$$
(5.48)

Alternatively, the quasi steady-state assumption (QSSA) that \(\mathrm{{[ES]}}\) does not change on the timescale of product formation can be made, so that \(\frac{d}{dt}\mathrm{{[ES]}} = 0 \Rightarrow k_{f}\mathrm{{[E][S]}} = k_{b}\mathrm{{[ES]}} + k_{\mathrm {cat}}\mathrm{{[ES]}}\) (Keener and Sneyd 2008), and

$$\begin{aligned} k_{f}\mathrm{{[E][S]}} = k_{b}\mathrm{{[ES]}} + k_{\mathrm {cat}}\mathrm{{[ES]}}&\Rightarrow k_{f} \mathrm{{\left( \mathrm{{[E]_T}} - \mathrm{{[ES]}}\right) [S]}} = k_{b}\mathrm{{[ES]}} + k_{\mathrm {cat}}\mathrm{{[ES]}} \nonumber \\&\Rightarrow k_{f}\mathrm{{[E]_T [S]}} = \left( k_{f}\mathrm{{[ES]}}\mathrm{{[S]}}+k_{b}\mathrm{{[ES]}} + k_{\mathrm {cat}}\mathrm{{[ES]}}\right) \nonumber \\&\Rightarrow \mathrm{{[ES]}} = \mathrm{{[E]_T}}\frac{\mathrm{{[S]}}}{\mathrm{{[S]}}+K_{\mathrm {M}}} \end{aligned}$$
(5.49)

where \(K_{\mathrm {M}}=\left( k_{b}+k_{\mathrm {cat}}\right) /k_{f}\) is the Michaelis–Menten constant of the reaction which quantifies the affinity of the enzyme to bind to the substrate.

Regardless of the hypothesis made to find an expression for \(\mathrm{{[ES]}}\), the rate \(v_{P}\) of production of \(\mathrm{{P}}\) can always be written as

$$\begin{aligned} v_{P} = \frac{\mathrm {d}\mathrm{{[P]}}}{\mathrm {d}t} = k_{\mathrm {cat}}\mathrm{{[ES]}} = k_{\mathrm {cat}}\mathrm{{[E]_T}}\frac{\mathrm{{[S]}}}{\mathrm{{[S]}}+K_{0.5}} = v_{max}\frac{\mathrm{{[S]}}}{\mathrm{{[S]}}+K_{0.5}} \end{aligned}$$
(5.50)

where \(v_{max}=k_{\mathrm {cat}}\mathrm{{[E]_T}}\) is the maximal rate of production of \(\mathrm{{P}}\) in the presence of enzyme saturation, when all the available enzyme takes part in the reaction; and the affinity constant \(K_{0.5}\) equals the dissociation constant \(K_{d}\) of the initial binding reaction in the chemical equilibrium approximation (Eq. 5.48), or the Michaelis–Menten constant in the QSSA (Eq. 5.49).

An important corollary of the Michaelis–Menten model of enzyme kinetics is that the fraction of the total enzyme that forms the intermediate complex \(\mathrm{{ES}}\) can be expressed by a Hill equation of the type

$$\begin{aligned} \frac{\mathrm{{[ES]}}}{\mathrm{{[E]_T}}} = \frac{\mathrm{{[S]}}}{\mathrm{{[S]}}+K_{0.5}} = \mathcal {H}_{1}\left( [S],K_{0.5}\right) \end{aligned}$$
(5.51)

and \(K_{0.5}\) can be regarded as the half-saturating substrate concentration of the reaction. Similarly, the effective reaction rate \(v_{P}\) (Eq. 5.51) is proportional to the maximal reaction rate by a Hill-like term \(\mathcal {H}_{1}\left( [S],K_{0.5}\right) \).

Appendix 2 Parameter Estimation

1.1 Appendix 2.1 Metabotropic Receptors

Rate constants \(O_{N},\,\Omega _{N}\) (Eq. 5.14) lump information on astrocytic metabotropic receptors’ activation and inactivation, namely how long it takes for these receptors, once bound by the agonist, to trigger PLC\(\upbeta \)-mediated \(\mathrm{{IP}_3}\) production and how long this latter lasts. Since \(\mathrm{{IP}_3}\) production mediated by agonist binding with the receptors controls the initial intracellular \(\mathrm{{Ca^{2+}}}\) surge, these two rate constants may be estimated by rise times of agonist-triggered \(\mathrm{{Ca^{2+}}}\) signals. With this regard, experiments reported that application of 50\(\, \upmu \) m DHPG—a potent agonist of mGluR5 which are the main type of metabotropic glutamate receptors expressed by astrocytes (Aronica et al. 2003)—triggers submembrane \(\mathrm{{Ca^{2+}}}\) signals characterized by a rise time \(\tau _{r}=0.272\pm {0.095}\,\mathrm{s}\). Because mGluR5 affinity (\(K_{0.5}\)) for DHPG is \({\sim }{2}\,{\, \upmu \textsc {m}}\) (Brabet et al. 1995), that is much smaller than the applied agonist concentration, receptor saturation may be assumed in those experiments whereby the receptor activation rate by DHPG (\(O_{\text {DHPG}}\)) can be expressed as a function of \(\tau _{r}\) (Barbour 2001), i.e., \(O_{\text {DHPG}}\approx \tau _{r}/({50}\,{\, \upmu \textsc {m}})\) = 0.055–0.113 \({\, \upmu \textsc {m}^{-1} \mathrm{s}^{-1}}\), so that \(\Omega _{\text {DHPG}}=O_{\text {DHPG}}K_{0.5}\approx \) 0.11–0.22 \({\mathrm{s}^{-1}}\). Corresponding rate constants for glutamate may then be estimated assuming similar kinetics, yet with \(K_{0.5}=K_N=\Omega _N/O_N \approx \) 3–10 \({\, \upmu \textsc {m}}\) (Daggett et al. 1995), that is 1.5–5-fold larger than \(K_{0.5}\) for DHPG. Moreover, since rise times of \(\mathrm{{Ca^{2+}}}\) signals triggered by nonsaturating physiological stimulation are faster than in the case of DHPG (Panatier et al. 2011), it may be assumed that \(O_N > O_\mathrm {DHPG}\). With this regard, for a choice of \(O_N \approx 3\times O_\text {DHPG}= {0.3}\,{\, \upmu \textsc {m}^{-1} \mathrm{s}^{-1}}\), with \(K_{N}={6}{\, \upmu \textsc {m}}\) such that \(\Omega _N = ({0.3}{\, \upmu \textsc {m}^{-1}\,\mathrm{s}^{-1}})({6}{\, \upmu \textsc {m}})={1.8}\,{\mathrm{s}^{-1}}\), a peak of extracellular glutamate concentration of \({250}\,{\, \upmu \textsc {m}}\), delivered at \(t=0\) and exponentially decaying at rate \(\Omega _{c}={40}\,{\mathrm{s}^{-1}}\) (Clements et al. 1992), is consistent with a peak fraction of bound receptors of \({\sim }0.75\) within \({\sim }{70}\,{\mathrm{m}\mathrm{s}}\) from stimulation (Eq. 5.14), which is in good agreement with experimental rise times.

1.2 Appendix 2.2 \(\mathrm{{IP}_3}\)R Kinetics

We consider a steady-state receptor open probability in the form of \(p_\mathrm {open}(C,I) = \mathcal {H}_1^3(I,d_1)\cdot \mathcal {H}_1^3(C,d_5) (1-\mathcal {H}_{1}\left( C,Q_2\right) )^3\) with \(Q_2=d_2(I+d_1)/(I+d_3)\) (see Chap. 3) and choose parameters to fit corresponding experimental data by Ramos-Franco et al. (2000) for (i) different \(\mathrm{{Ca^{2+}}}\) concentrations \(\hat{C}\) at a fixed \(\mathrm{{IP}_3}\) level of \(\bar{I}={1}{\, \upmu \textsc {m}}\), i.e., \(\hat{p}(\hat{C})\); and (ii) for different \(\mathrm{{IP}_3}\) concentrations (\(\hat{I}\)) at an intracellular \(\mathrm{{Ca^{2+}}}\) concentration of \(\bar{C}={25}\,\mathrm{{n} \textsc {m}}\), i.e., \(\hat{p}(\hat{I})\). To reduce the problem dimensionality while retaining essential dynamical features of \(\mathrm{{IP}_3}\) gating kinetics, we set \(d_1=d_3\) (Li and Rinzel 1994). Accordingly, defining the vector parameter \(\mathbf {x}_p = \left( d_1,d_2,d_5,O_2\right) \), we minimize the cost function \(c_p(\mathbf {x}_p)=(p_\mathrm {open}(\hat{C},\bar{I})-\hat{p}(\hat{C}))^2 + (p_\mathrm {open}(\bar{C},\hat{I})-\hat{p}(\hat{I}))^2\) by the Artificial Bee Colony (ABC) algorithm (Karaboga and Basturk 2007) considering 2000 evolutions of a colony of 100 individuals.

Ultrastructural analysis of astrocytes in situ revealed that the probability of ER localization in the cytoplasmic space at the soma is between \({\sim }\)40 and 70% (Pivneva et al 2008). This suggests that the corresponding ratio between ER and cytoplasmic volumes (\(\rho _{A}\)) is comprised between \({\sim }\)0.4 and 0.7.

To estimate the cell’s total free \(\mathrm{{Ca^{2+}}}\) content \(C_{T}\) we make the consideration that the resting \(\mathrm{{Ca^{2+}}}\) concentration in the cytosol is \(<{0.15}\,{\, \upmu \textsc {m}}\) (Zheng et al. 2015) and can be neglected with respect to the amount of \(\mathrm{{Ca^{2+}}}\) stored in the ER (\(C_{ER}\)) (Berridge et al. 2003). Hence, with \(C_{ER}\ge {10}\,{\, \upmu \textsc {m}}\) (Golovina and Blaustein 1997) and a choice of \(\rho _{A}\ge 0.4\), it follows that \(C_{T}\approx \rho _{A}\, C_{ER} \ge {4}\,{\, \upmu \textsc {m}}\). In conditions close to store depletion during oscillations (Camello et al. 2002), this latter value would also coincide with the peak \(\mathrm{{Ca^{2+}}}\) reached in the cytoplasm, which is reported between \(5\,{\, \upmu \textsc {m}}\) and \({\sim }{20}\,{\, \upmu \textsc {m}}\) (Csordàs et al. 1999; Parpura and Haydon 2000; Kang and Othmer 2009; Shigetomi et al. 2010).

In our simulations, we set \(\rho _A = 0.5\) while leaving arbitrary the choice of \(C_T\) as far as the resulting \(\mathrm{{Ca^{2+}}}\) oscillations qualitatively resemble the shape of those observed in experiments. The remaining parameters for CICR, i.e., \(\mathbf {z}_c = \left( \Omega _C, O_P\right) \), were chosen to approximate the number and period of \(\mathrm{{Ca^{2+}}}\) oscillations observed on average in experiments on cultured astrocytes that were stimulated by glutamate perfusion. By “on average,” we mean that we considered the average trace resulting from \(n=5\) different \(\mathrm{{Ca^{2+}}}\) signals generated within the same period of time and by the same stimulus in identical experimental conditions.

1.3 Appendix 2.3 \(\mathrm{{IP}_3}\) signaling

Once set the CICR parameters, individual \(\mathrm{{Ca^{2+}}}\) traces used to obtained the above-mentioned “average trace” were used to search for \(\mathbf {z}_p = \left( O_\beta ,O_\delta ,O_{3K},\Omega _{5P}\right) \), assuming random initial conditions. The ensuing parameter values were also used in Figs. 5.4, 5.5, and 5.6 although \(O_\beta ,\,O_\delta \), and \(O_{3K}\) were increased, from case to case, by a factor comprised between 1.2 and 2 either to expand the oscillatory range or to promote CICR emergence (by increasing \(O_\beta ,\,O_\delta \)) or termination thereof (by larger \(O_{3K}\) values).

1.4 Appendix 2.4 \(\mathrm{{cPKC}}\) and DAG Signaling

Calcium-dependent cPKC-mediated phosphorylation has been documented for astrocytic mGluRs and \(\mathrm{{P_2Y_1Rs}}\) (Codazzi et al. 2001; Hardy et al. 2005) and results in a reduction of receptor binding affinity by a factor \(\zeta \approx \) 2–10 (Hardy et al. 2005), or possibly higher depending on the cell’s expression of cPKCs (Nakahara et al. 1997; Shinohara et al. 2011). Since experiments showed that cPKC is robustly activated only when \(\mathrm{{Ca^{2+}}}\) increases beyond half of the peak concentration reached during oscillations (Codazzi et al. 2001) then, considering peak \(\mathrm{{Ca^{2+}}}\) values of \({\sim }\) 1–3 \({\, \upmu \textsc {m}}\) (Shigetomi et al. 2010) allows estimating \(\mathrm{{Ca^{2+}}}\) affinity of cPKC in the range of \(K_{KC} \le 0.5--1.5\,{\, \upmu \textsc {m}}\) which indeed comprises the value of \({\sim }{700}\,{\mathrm{n}\textsc {m}}\) predicted experimentally (Mosior and Epand 1994). Of the same order of magnitude also is the \(\mathrm{{Ca^{2+}}}\) affinity reported for DAGK, i.e., \(K_{DC}\, {\approx }\,\)0.3–0.4 \({\, \upmu \textsc {m}}\) (Sakane et al. 1991; Yamada et al. 1997).

Reported values of DAG affinities for cPKC and DAGK may considerably differ. Micellar assays of cPKCs activity suggests values of \(K_{KD}\) as low as 4.6–13.3 nm (Ananthanarayanan et al. 2003), whereas studies on purified DAGK suggest a substrate affinity for this kinase of \(K_{DD}\approx {60}\,{\, \upmu \textsc {m}}\) (Kanoh et al. 1983). The differences in experimental setups and the possibility that the activity of these kinases could be widely regulated by different DAG pools make these estimate of scarce utility for our model, where the DAG concentration is of the same order of magnitude of \(\mathrm{{IP}_3}\) one. With this regard, we choose to set these affinities to 0.1 \(\, \upmu \) m which corresponded in our simulations to the average intracellular DAG concentration during \(\mathrm{{Ca^{2+}}}\) oscillations.

The remaining parameters, namely \(\mathbf {z}_k = \left( O_{KD}, O_K, \Omega _D, O_D, \Omega _D\right) \), were arbitrarily chosen considering two constrains: (i) DAG concentration for damped \(\mathrm{{Ca^{2+}}}\) oscillations must stabilize to a constant value; and (ii) the down phase of \(\mathrm{{cPKC^*}}\) oscillations must follow that of \(\mathrm{{Ca^{2+}}}\) ones as suggested by experimental observations by Codazzi et al. (2001).

Appendix 3 Software

The Python file used to generate the figures of this chapter can be downloaded from the online book repository at https://github.com/mdepitta/comp-glia-book/tree/master/Ch5.DePitta. The software for this chapter is organized in two folders. The folder contains data to fit the \(G\)-\(ChI\) model. WebPlotDigitizer 4.0 (https://automeris.io/WebPlotDigitizer) was used to extract experimental data by Ramos-Franco et al. (2000, Figs. 6 and 7) and Codazzi et al. (2001, Fig. 5). The Jupyter notebook file found in this folder contains the code to load and clean experimental data used in the simulations.

The folder contains instead all the routines (including ) used for the simulations of this chapter. The two files and contains the core \(G\)-\(ChI\) model implementation in C/C++11, while the class in provides the Python interface to simulate the \(G\)-\(ChI\) model. The model was integrated by a variable-coefficient linear multistep Adams method in Nordsieck form which proved robust to correctly solve stiff problems rising from different parameter choices (Skeel 1986). Model fitting is provided by and relies on the PyGMO 2.6 optimization package (https://github.com/esa/pagmo2.git).

The library provides routines to estimate the period and range of \(\mathrm{{Ca^{2+}}}\) oscillation as in Fig. 5.6. These routines use numerical continuation of the extended \(G\)-\(ChI\) model by the Python module PyDSTool 0.92 (Clewley 2012) https://github.com/robclewley/pydstool.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Pittà, M., Ben-Jacob, E., Berry, H. (2019). G Protein-Coupled Receptor-Mediated Calcium Signaling in Astrocytes. In: De Pittà, M., Berry, H. (eds) Computational Glioscience. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-00817-8_5

Download citation

Publish with us

Policies and ethics