Skip to main content

Intracellular Calcium Dynamics: Biophysical and Simplified Models

  • Chapter
  • First Online:
Computational Glioscience

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

Abstract

Calcium ions are an important second messenger in living cells. A fundamental approach for studying calcium signalling is the combination of state-of-the-art experimental techniques with spatiotemporal mathematical models of calcium regulation. Extensive modelling work on calcium oscillations and waves consists of a variety of theoretical/computational methods and models of different complexity. Some models can be assigned to a category of biologically realistic, detailed models, analysis of which is restricted to numerical methods. Other models can be placed in a category of simplified, minimal models susceptible to mathematical analysis. In this chapter, we provide an overview of a number of models for intracellular calcium dynamics belonging to both categories. Both types of models complement each other nicely and are vital for a better understanding of the complex mechanisms involved in cellular calcium signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berridge MJ (2005) Unlocking the secrets of cell signalling. Ann Rev Physiol 67:1–21

    Article  CAS  Google Scholar 

  • Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochimica et Biophysica Acta 1793:933–940

    Article  CAS  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  Google Scholar 

  • Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P\(_3\)-and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754

    Article  CAS  Google Scholar 

  • Boitano S, Dirksen ER, Sanderson MJ (1992) Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 258:292–294

    Article  CAS  Google Scholar 

  • Bootman MD, Berridge MJ, Putney JW, Roderick HL (eds) (2011) Calcium signaling. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Carafoli E (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci USA 99(3):1115–1122

    Article  CAS  Google Scholar 

  • Cheng H, Lederer WJ (2008) Calcium sparks. Physiol Rev 88:1491–1545

    Article  CAS  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  CAS  Google Scholar 

  • Combettes L, Dupont G, Parys JB (2004) New mechanisms and functions in Ca\(^{2+}\) signalling. Biol Cell 96:1–2

    Article  CAS  Google Scholar 

  • Coombes S (2001) The effect of ion pumps on the speed of travelling waves in the fire-diffuse-fire model of Ca\(^{2+}\) release. Bull Math Biol 63:1–20

    Article  CAS  Google Scholar 

  • Coombes S, Timofeeva Y (2003) Sparks and waves in a stochastic fire-diffuse-fire model of calcium release. Phys Rev E 68(021):915

    Google Scholar 

  • Coombes S, Hinch R, Timofeeva Y (2004) Receptors, sparks and waves in a fire-diffuse-fire framework for calcium release. Prog Biophys Mol Biol 85:197–216

    Article  CAS  Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247(4941):470–473

    Article  CAS  Google Scholar 

  • Dupont G, Tordjmann T, Clair C, Swillens S, Claret M, Combettes L (2000) Mechanism of receptor-oriented intercellular calcium wave propagation in hepatocytes. FASEB J 14(2):279–289

    Article  CAS  Google Scholar 

  • Dupont G, Combettes L, Leybaert L (2007) Calcium dynamics: spatio-temporal organization from the subcellular to the organ level. Int Rev Cytol 261:193–245

    Article  CAS  Google Scholar 

  • Dupont G, Falcke M, Kirk V, Sneyd J (2016) Models of calcium signalling. Springer, Interdisciplinary Applied Mathematics

    Google Scholar 

  • Endo M, Tanaka M, Ogawa Y (1970) Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature 228:34–36

    Article  CAS  Google Scholar 

  • Ermentrout GB (2002) Simulating, analysing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM, Philadelphia

    Google Scholar 

  • Falcke M (2003) Deterministic and stochastic models of intracellular Ca\(^{2+}\) waves. New J Phys 5:96.1–96.28

    Google Scholar 

  • Falcke M (2004) Reading the patterns in living cells - the physics of Ca\(^{2+}\) signaling. Adv Phys 53(3):255–440

    Article  CAS  Google Scholar 

  • Falcke M, Tsimring L, Levine H (2000) Stochastic spreading of intracellular Ca\(^{2+}\) release. Phys Rev E 62:2636–2643

    Article  CAS  Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in models of nerve membrane. Biophys J 1:445–466

    Article  CAS  Google Scholar 

  • Goldbeter A (1996) Biochemical oscillations and cellular rhythms: the molecular bases of periodic and chaotic behaviour. Cambridge University Press, Cambridge

    Google Scholar 

  • Goldbeter A, Dupont G, Berridge MJ (1990) Minimal model for signal-induced Ca\(^{2+}\) oscillations and for their frequency encoding through protein phosphorylation. Proc Natl Acad Sci USA 87:1461–1465

    Article  CAS  Google Scholar 

  • Goldbeter A, Gérard C, Gonze D, Leloup J, Dupont G (2012) Systems biology of cellular rhythms. FEBS Lett 586:2955–2965

    Article  CAS  Google Scholar 

  • Harris J, Timofeeva Y (2010) Intercellular calcium waves in the fire-diffuse-fire framework: green’s function for gap-junctional coupling. Phys Rev E 82(051):910

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  CAS  Google Scholar 

  • Izu LT, Wier WG, Balke CW (2001) Evolution of cardiac waves from stochastic calcium sparks. Biophys J 80:103–120

    Article  CAS  Google Scholar 

  • Jaffe LF (1993) Classes and mechanisms of calcium waves. Cell Calcium 14:736–745

    Article  CAS  Google Scholar 

  • Kaneko T, Tanaka H, Oyamada M, Kawata S, Takamatsu T (2000) Three distinct types of Ca\(^{2+}\) waves in Langendorff-perfused rat heart revealed by real-time confocal microscopy. Circ Res 86:1093–1099

    Article  CAS  Google Scholar 

  • Keizer JE, Smith GD (1998) Spark-to-wave transition: saltatory transmission of calcium waves in cardiac myocytes. Biophys Chem 72:87–100

    Article  CAS  Google Scholar 

  • Keizer JE, Smith GD, Dawson SP, Pearson J (1998) Saltatory propagation of Ca\(^{2+}\) waves by Ca\(^{2+}\) sparks. Biophys J 75:595–600

    Article  CAS  Google Scholar 

  • Krebs J, Michalak M (eds) (2007) Calcium: a matter of life or death, New comprehensive biochemistry, vol 41. Elsevier Science

    Google Scholar 

  • Kupferman R, Mitra PP, Hohenberg PC, Wang SSH (1997) Analytical calculation of intracellular calcium wave characteristics. Biophys J 72:2430–2444

    Article  CAS  Google Scholar 

  • Lechleiter J, Girard S, Peralta E, Clapham D (1991) Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science 252:123–126

    Article  CAS  Google Scholar 

  • Leybaert L, Sanderson MJ (2012) Intercellular Ca\(^{2+}\) waves: mechanisms and function. Physiol Rev 92:1359–1392

    Article  CAS  Google Scholar 

  • Li YX, Rinzel J (1994) Equations for InsP\(_3\) receptor-mediated [Ca\(^{2+}\)] oscillations derived from a detailed kinetic model: a hodgkin-huxley like formalism. J Theor Biol 166:461–473

    Article  CAS  Google Scholar 

  • Lipp P, Niggli E (1993) Microscopic spiral waves reveal positive feedback in subcellular calcium signaling. Biophys J 65:2272–2276

    Article  CAS  Google Scholar 

  • Marchant JS, Parker I (2001) Role of elementary Ca\(^{2+}\) puffs in generating repetitive Ca\(^{2+}\) oscillations. EMBO J 20:65–76

    Article  CAS  Google Scholar 

  • Mikoshiba K (2007) IP\(_3\) receptor/Ca\(^{2+}\) channel: from discovery to new signaling concepts. J Neurochem 102:1426–1446

    Article  CAS  Google Scholar 

  • Miyazaki S (2006) Thirty years of calcium signals at fertilization. Semin Cell Dev Biol 17:233–243

    Article  CAS  Google Scholar 

  • Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulation nerve axon. Proc IRE 50:2061–2070

    Article  Google Scholar 

  • Paemeleire K, Martin PEM, Coleman SL, Fogarty KE, Carrington WA, Leybaert L, Tuft RA, Evans WH, Sanderson MJ (2000) Intercellular calcium waves in HeLa cells expressing GFP-labeled connexin 43, 32, or 26. Mol Biol Cell 11(5):1815–1827

    Article  CAS  Google Scholar 

  • Parekh AB (2011) Decoding cytosolic Ca\(^{2+}\) oscillations. Trends Biochem Sci 36(2):78–87

    Article  CAS  Google Scholar 

  • Parker I, Ivorra I (1990) Inhibition by Ca\(^{2+}\) of inositol trisphosphate-mediated Ca\(^{2+}\) liberation: a possible mechanism for oscillatory release of Ca\(^{2+}\). Proc Natl Acad Sci USA 87:260–264

    Article  CAS  Google Scholar 

  • Petersen OH, Michalak M, Verkhratsky A (2005) Calcium signalling: past, present and future. Cell Calcium 38:161–169

    Article  CAS  Google Scholar 

  • Rizzuto R, Pozzan T (2006) Microdomains of intracellular ca\(^{2+}\): molecular determinants and functional consequences. Physiol Rev 86:369–408

    Article  CAS  Google Scholar 

  • Røttingen JA, Iversen JG (2000) Ruled by waves? Intracellular and intercellular calcium signalling. Acta Physiol Scand 169:203–219

    Article  Google Scholar 

  • Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54:716–725

    Article  Google Scholar 

  • Schuster S, Marhl M, Höfer T (2002) Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. Eur J Biochem 269:1333–1355

    Article  CAS  Google Scholar 

  • Slepchenko BM, Schaff JC, Choi YS (2000) Numerical approach to fast reactions in reaction-diffusion systems: application to buffered calcium waves in bistable models. J Comput Phys 162:186–218

    Article  CAS  Google Scholar 

  • Sneyd J, Falcke M (2005) Models of the inositol trisphosphate receptor. Prog Biophys Mol Biol 89:207–245

    Article  CAS  Google Scholar 

  • Sneyd J, Tsaneva-Atanasova K (2003) Understanding calcium dynamics: experiments and theory, Springer, chap Modeling calcium waves, pp 179–199

    Google Scholar 

  • Sneyd J, Dale P, Duffy A (1998) Traveling waves in buffered systems: applications to calcium waves. SIAM J Appl Math 58:1178–1192

    Article  Google Scholar 

  • Sneyd J, LeBeau A, Yule D (2000) Traveling waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis. Phys D 145:158–179

    Article  CAS  Google Scholar 

  • Stokes DL, Green NM (2003) Structure and function of the calcium pump. Ann Rev Biophys Biomol Struct 32:445–468

    Article  CAS  Google Scholar 

  • Takamatsu T, Wier WG (1990) Calcium waves in mammalian heart: quantification of origin, magnitude, waveform, and velocity. FASEB J 4:1519–1525

    Article  CAS  Google Scholar 

  • Thomas AP, Renard DC, Rooney TA (1991) Spatial and temporal organization of calcium signalling in hepatocytes. Cell Calcium 12:111–126

    Article  CAS  Google Scholar 

  • Thul R, Coombes S, Roderick HL, Bootman MD (2012) Subcellular calcium dynamics in a whole-cell model of an atrial myocyte. Proc Natl Acad Sci USA 109(6):2150–2155

    Article  CAS  Google Scholar 

  • Timofeeva Y, Coombes S (2003) Wave bifurcation and propagation failure in a model of calcium release. J Math Biol 47:249–269

    Article  CAS  Google Scholar 

  • Toma I, Bansal E, Meer EJ, Kang JJ, Vargas SL, Peti-Peterdi J (2008) Connexin 40 and ATP-dependent intercellular calcium wave in renal glomerular endothelial cells. Am J Physiol - Regul Integr Comp Physiol 294(6):R1769–R1776

    Article  CAS  Google Scholar 

  • Wagner J, Keizer J (1994) Effects of rapid buffers on Ca\(^{2+}\) diffusion and Ca\(^{2+}\) oscillations. Biophys J 67:447–456

    Article  CAS  Google Scholar 

  • Wang Z, Haydon PG, Yeung ES (2000) Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Anal Chem 72(9):2001–2007

    Article  CAS  Google Scholar 

  • Young GD, Keizer J (1992) A single pool IP\(_3\)-receptor based model for agonist-stimulated Ca\(^{2+}\) oscillations. Proc Natl Acad Sci USA 89:9895–9899

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Timofeeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Timofeeva, Y. (2019). Intracellular Calcium Dynamics: Biophysical and Simplified Models. In: De Pittà, M., Berry, H. (eds) Computational Glioscience. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-00817-8_3

Download citation

Publish with us

Policies and ethics