Skip to main content

Computational Models of Astrocytes and Astrocyte–Neuron Interactions: Characterization, Reproducibility, and Future Perspectives

  • Chapter
  • First Online:
Computational Glioscience

Abstract

Astrocytes have been shown to participate in a variety of brain functions. These include homeostasis, metabolism, neuronal survival in pathological circumstances, and neurovascular coupling. Since astrocytes extend their processes into close proximity to synapses, it has also been proposed that they take active roles in synaptic transmission, learning, and memory. The complexity of dynamic interactions on both molecular and cellular levels of neurons and astrocytes is overwhelming. This underlines the demand for detailed, integrative computational models for advancing our understanding of the functional contribution of astrocytes in the nervous system. This study presents the state of the art in computational models for astrocytes and astrocyte–neuron interactions. First, we characterized the models based on the type of biological entities they described. We then studied several aspects of the models in detail, including reproducibility. We discovered that several publications lack crucial details in how the models were presented, preventing successful reproduction of the results. Graphical illustrations of these models were misleading, mathematical equations incorrect, or selected model components not adequately justified. Moreover, in some cases, it was impossible, after several trials, to reproduce the simulated results presented in the original publications. In order to facilitate reproducible science, we propose some criteria that computational glioscience models should meet. To the best of our knowledge, this study is one of the first to report the detailed categorization and evaluation of astrocyte-neuron models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguado F, Espinosa-Parrilla JF, Carmona MA, Soriano E (2002) Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. J Neurosci 22(21):9430–9444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59(6):932–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agulhon C, Sun M-Y, Murphy T, Myers T, Lauderdale K, Fiacco TA (2012) Calcium signaling and gliotransmission in normal vs. reactive astrocytes. Front Pharmacol 3:139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allam SL, Ghaderi VS, Bouteiller J-MC, Legendre A, Ambert N, Greget R, Bischoff S, Baudry M, Berger TW (2012) A computational model to investigate astrocytic glutamate uptake influence on synaptic transmission and neuronal spiking. Front Comput Neurosci 6:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Allegrini P, Fronzoni L, Pirino D (2009) The influence of the astrocyte field on neuronal dynamics and synchronization. J Biol Phys 35(4):413–423

    Article  PubMed  PubMed Central  Google Scholar 

  • Amiri M, Bahrami F, Janahmadi M (2011a) Functional modeling of astrocytes in epilepsy: a feedback system perspective. Neural Comput Appl 20(8):1131–1139

    Article  Google Scholar 

  • Amiri M, Montaseri G, Bahrami F (2011b) On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective. Biol Cybern 105(2):153–166

    Article  PubMed  Google Scholar 

  • Amiri M, Bahrami F, Janahmadi M (2012a) Functional contributions of astrocytes in synchronization of a neuronal network model. J Theor Biol 292:60–70

    Article  PubMed  Google Scholar 

  • Amiri M, Bahrami F, Janahmadi M (2012b) Modified thalamocortical model: a step towards more understanding of the functional contribution of astrocytes to epilepsy. J Comput Neurosci 33(2):285–299

    Article  PubMed  Google Scholar 

  • Amiri M, Bahrami F, Janahmadi M (2012c) On the role of astrocytes in epilepsy: a functional modeling approach. Neurosci Res 72(2):172–180

    Article  PubMed  Google Scholar 

  • Amiri M, Hosseinmardi N, Bahrami F, Janahmadi M (2013a) Astrocyte-neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments. J Comput Neurosci 34(3):489–504

    Article  PubMed  Google Scholar 

  • Amiri M, Montaseri G, Bahrami F (2013b) A phase plane analysis of neuron-astrocyte interactions. Neural Netw 44:157–165

    Article  PubMed  Google Scholar 

  • Amiri M, Amiri M, Nazari S, Faez K (2016) A new bio-inspired stimulator to suppress hyper-synchronized neural firing in a cortical network. J Theor Biol 410:107–118

    Article  PubMed  Google Scholar 

  • Atri A, Amundson J, Clapham D, Sneyd J (1993) A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys J 65(4):1727–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aubert A, Pellerin L, Magistretti PJ, Costalat R (2007) A coherent neurobiological framework for functional neuroimaging provided by a model integrating compartmentalized energy metabolism. Proc Natl Acad Sci U S A 104(10):4188–4193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrack DS, Thul R, Owen MR (2014) Modelling the coupling between intracellular calcium release and the cell cycle during cortical brain development. J Theor Biol 347:17–32

    Article  CAS  PubMed  Google Scholar 

  • Barrack DS, Thul R, Owen MR (2015) Modelling cell cycle synchronisation in networks of coupled radial glial cells. J Theor Biol 377:85–97

    Article  CAS  PubMed  Google Scholar 

  • Bellinger S (2005) Modeling calcium wave oscillations in astrocytes. Neurocomputing 65–66:843–850

    Article  Google Scholar 

  • Bennett MR, Farnell L, Gibson WG (2005) A quantitative model of purinergic junctional transmission of calcium waves in astrocyte networks. Biophys J 89(4):2235–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MR, Buljan V, Farnell L, Gibson WG (2006) Purinergic junctional transmission and propagation of calcium waves in spinal cord astrocyte networks. Biophys J 91(9):3560–3571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MR, Farnell L, Gibson WG (2008a) Origins of blood volume change due to glutamatergic synaptic activity at astrocytes abutting on arteriolar smooth muscle cells. J Theor Biol 250(1):172–185

    Article  CAS  PubMed  Google Scholar 

  • Bennett MR, Farnell L, Gibson WG (2008b) Origins of the BOLD changes due to synaptic activity at astrocytes abutting arteriolar smooth muscle. J Theor Biol 252(1):123–130

    Article  CAS  PubMed  Google Scholar 

  • Bennett MR, Farnell L, Gibson WG (2008c) A quantitative model of cortical spreading depression due to purinergic and gap-junction transmission in astrocyte networks. Biophys J 95(12):5648–5660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvetti D, Cheng Y, Somersalo E (2015) A spatially distributed computational model of brain cellular metabolism. J Theor Biol 376:48–65

    Article  CAS  PubMed  Google Scholar 

  • Cannon RC, Gewaltig M-O, Gleeson P, Bhalla US, Cornelis H, Hines ML, Howell FW, Muller E, Stiles JR, Wils S, De Schutter E (2007) Interoperability of neuroscience modeling software: current status and future directions. Neuroinformatics 5(2):127–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmignoto G (2000) Reciprocal communication systems between astrocytes and neurones. Prog Neurobiol 62(6):561–581

    Article  CAS  PubMed  Google Scholar 

  • Chander BS, Chakravarthy VS (2012) A computational model of neuro-glio-vascular loop interactions. PLoS ONE 7(11):e48802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crook SM, Davison AP, Plesser HE (2013) Learning from the past: approaches for reproducibility in computational neuroscience. In: Bower JM (ed) 20 years of computational neuroscience. Springer, New York, pp 73–102

    Chapter  Google Scholar 

  • De Pittà M, Brunel N (2016) Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study. Neural Plast. 2016:7607924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Pittà M, Goldberg M, Volman V, Berry H, Ben-Jacob E (2009a) Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes. J Biol Phys 35(4):383–411, erratum 36:221–222 (2010)

    Google Scholar 

  • De Pittà M, Volman V, Levine H, Ben-Jacob E (2009b) Multimodal encoding in a simplified model of intracellular calcium signaling. Cogn. Process. 10(Suppl 1):S55–S70

    Article  PubMed  Google Scholar 

  • De Pittà M, Volman V, Berry H, Ben-Jacob E (2011) A tale of two stories: astrocyte regulation of synaptic depression and facilitation. PLoS Comput. Biol. 7(12):e1002293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Pittà M, Volman V, Berry H, Parpura V, Volterra A, Ben-Jacob E (2012) Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front. Comput. Neurosci. 6:98

    Article  PubMed  PubMed Central  Google Scholar 

  • De Pittà M, Brunel N, Volterra A (2016) Astrocytes: orchestrating synaptic plasticity? Neuroscience 323:43–61

    Article  PubMed  CAS  Google Scholar 

  • De Schutter E (2008) Why are computational neuroscience and systems biology so separate. PLoS Comput. Biol. 4(5):e1000078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Young GW, Keizer J (1992) A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca\(^{2+}\) concentration. Proc Natl Acad Sci U S A 89(20):9895–9899

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Garbo A (2009) Dynamics of a minimal neural model consisting of an astrocyte, a neuron, and an interneuron. J Biol Phys 35(4):361–382

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Garbo A, Barbi M, Chillemi S, Alloisio S, Nobile M (2007) Calcium signalling in astrocytes and modulation of neural activity. Biosystems 89(1–3):74–83

    Article  PubMed  CAS  Google Scholar 

  • Diekman CO, Fall CP, Lechleiter JD, Terman D (2013) Modeling the neuroprotective role of enhanced astrocyte mitochondrial metabolism during stroke. Biophys J 104(8):1752–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiNuzzo M, Gili T, Maraviglia B, Giove F (2011) Modeling the contribution of neuron-astrocyte cross talk to slow blood oxygenation level-dependent signal oscillations. J Neurophysiol 106(6):3010–3018

    Article  CAS  PubMed  Google Scholar 

  • Dronne M-A, Boissel J-P, Grenier E (2006) A mathematical model of ion movements in grey matter during a stroke. J Theor Biol 240(4):599–615

    Article  CAS  PubMed  Google Scholar 

  • Dupont G, Croisier H (2010) Spatiotemporal organization of Ca\(^{2+}\) dynamics: a modeling-based approach. HFSP J 4(2):43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupont G, Goldbeter A (1993) One-pool model for Ca\(^{2+}\) oscillations involving Ca\(^{2+}\) and inositol 1, 4, 5-trisphosphate as co-agonists for Ca\(^{2+}\) release. Cell Calcium 14(4):311–322

    Article  CAS  PubMed  Google Scholar 

  • Dupont G, Lokenye EFL, Challiss RAJ (2011) A model for Ca\(^{2+}\) oscillations stimulated by the type 5 metabotropic glutamate receptor: an unusual mechanism based on repetitive, reversible phosphorylation of the receptor. Biochimie 93(12):2132–2138

    Article  CAS  PubMed  Google Scholar 

  • Edwards JR, Gibson WG (2010) A model for Ca\(^{2+}\) waves in networks of glial cells incorporating both intercellular and extracellular communication pathways. J Theor Biol 263(1):45–58

    Article  CAS  PubMed  Google Scholar 

  • Fellin T, Ellenbogen JM, De Pittà M, Ben-Jacob E, Halassa MM (2012) Astrocyte regulation of sleep circuits: experimental and modeling perspectives. Front Comput Neurosci 6:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Fink CC, Slepchenko B, Loew LM (1999) Determination of time-dependent inositol-1, 4, 5-trisphosphate concentrations during calcium release in a smooth muscle cell. Biophys J 77(1):617–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerstner W, Kistler WM (2002) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Giaume C, Venance L (1998) Intercellular calcium signaling and gap junctional communication in astrocytes. Glia 24(1):50–64

    Article  CAS  PubMed  Google Scholar 

  • Goldberg M, De Pittà M, Volman V, Berry H, Ben-Jacob E (2010) Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks. PLoS Comput Biol 6(8):e1000909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gordleeva SY, Stasenko SV, Semyanov AV, Dityatev AE, Kazantsev VB (2012) Bi-directional astrocytic regulation of neuronal activity within a network. Front Comput Neurosci 6:92

    Article  PubMed  PubMed Central  Google Scholar 

  • Goto I, Kinoshita S, Natsume K (2004) The model of glutamate-induced intracellular Ca\(^{2+}\) oscillation and intercellular Ca\(^{2+}\) wave in brain astrocytes. Neurocomputing 58–60:461–467

    Article  Google Scholar 

  • Guthrie PB, Knappenberger J, Segal M, Bennett MVL, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19(2):520–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haghiri S, Ahmadi A, Saif M (2016) VLSI implementable neuron-astrocyte control mechanism. Neurocomputing 214:280–296

    Article  Google Scholar 

  • Haghiri S, Ahmadi A, Saif M (2017) Complete neuron-astrocyte interaction model: digital multiplierless design and networking mechanism. IEEE Trans Biomed Circuits Syst 11(1):117–127

    Article  PubMed  Google Scholar 

  • Halnes G, Østby I, Pettersen KH, Omholt SW, Einevoll GT (2013) Electrodiffusive model for astrocytic and neuronal ion concentration dynamics. PLoS Comput Biol 9(12):e1003386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayati M, Nouri M, Haghiri S, Abbott D (2016) A digital realization of astrocyte and neural glial interactions. IEEE Trans Biomed Circuits Syst 10(2):518–529

    Article  PubMed  Google Scholar 

  • Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: a database to support computational neuroscience. J Comput Neurosci 17(1):7–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Hituri K, Linne M-L (2013) Comparison of models for IP\(_3\) receptor kinetics using stochastic simulations. PLoS ONE 8(4):e59618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höfer T, Politi A, Heinrich R (2001) Intercellular Ca\(^{2+}\) wave propagation through gap-junctional Ca\(^{2+}\) diffusion: a theoretical study. Biophys J 80(1):75–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Höfer T, Venance L, Giaume C (2002) Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J Neurosci 22(12):4850–4859

    Article  PubMed  PubMed Central  Google Scholar 

  • Houart G, Dupont G, Goldbeter A (1999) Bursting, chaos and birhythmicity originating from self-modulation of the inositol 1, 4, 5-trisphosphate signal in a model for intracellular Ca\(^{2+}\) oscillations. Bull Math Biol 61(3):507–530

    Article  CAS  PubMed  Google Scholar 

  • Iacobas DA, Suadicani SO, Spray DC, Scemes E (2006) A stochastic two-dimensional model of intercellular Ca\(^{2+}\) wave spread in glia. Biophys J 90(1):24–41

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience. The MIT Press, Cambridge

    Google Scholar 

  • Jha BK, Jha A (2015) Two dimensional finite volume model to study the effect of ER on cytosolic calcium distribution in astrocytes. Procedia Comput Sci 46:1285–1293

    Article  Google Scholar 

  • Jolivet R, Allaman I, Pellerin L, Magistretti PJ, Weber B (2010) Comment on recent modeling studies of astrocyte-neuron metabolic interactions. J Cereb Blood Flow Metab 30(12):1982–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolivet R, Coggan JS, Allaman I, Magistretti PJ (2015) Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble. PLoS Comput Biol 11(2):e1004036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung P, Cornell-Bell A, Madden KS, Moss F (1998) Noise-induced spiral waves in astrocyte syncytia show evidence of self-organized criticality. J Neurophysiol 79(2):1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Kang M, Othmer HG (2009) Spatiotemporal characteristics of calcium dynamics in astrocytes. Chaos 19(3):037116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kazantsev VB (2009) Spontaneous calcium signals induced by gap junctions in a network model of astrocytes. Phys Rev E 79(1):010901

    Article  CAS  Google Scholar 

  • Keener J, Sneyd J (1998) Mathematical physiology. Springer, Berlin

    Google Scholar 

  • Keener J, Sneyd J (2009) Mathematical physiology: I: cellular physiology. Springer, Berlin

    Book  Google Scholar 

  • Komin N, Moein M, Ellisman MH, Skupin A (2015) Multiscale modeling indicates that temperature dependent [Ca\(^{2+}\)]\(_i\) spiking in astrocytes is quantitatively consistent with modulated SERCA activity. Neural Plast 2015:683490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuriu T, Kakimoto Y, Araki O (2015) Computational simulation: astrocyte-induced depolarization of neighboring neurons mediates synchronous UP states in a neural network. J Biol Phys 41:377–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lallouette J, De Pittà M, Ben-Jacob E, Berry H (2014) Sparse short-distance connections enhance calcium wave propagation in a 3D model of astrocyte networks. Front Comput Neurosci 8:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavrentovich M, Hemkin S (2008) A mathematical model of spontaneous calcium (II) oscillations in astrocytes. J Theor Biol 251(4):553–560, corrigendum 260:332 (2009)

    Google Scholar 

  • Lemon G, Gibson WG, Bennett MR (2003) Metabotropic receptor activation, desensitization and sequestration-I: modelling calcium and inositol 1, 4, 5-trisphosphate dynamics following receptor activation. J Theor Biol 223(1):93–111

    Article  CAS  PubMed  Google Scholar 

  • Li Y-X, Rinzel J (1994) Equations for InsP3 receptor-mediated [Ca\(^{2+}\)]\(_i\) oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J Theor Biol 166(4):461–473

    Article  CAS  PubMed  Google Scholar 

  • Li B, Chen S, Zeng S, Luo Q, Li P (2012) Modeling the contributions of Ca\(^{2+}\) flows to spontaneous Ca\(^{2+}\) oscillations and cortical spreading depression-triggered Ca\(^{2+}\) waves in astrocyte networks. PLoS ONE 7(10):e48534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Tang J, Ma J, Du M, Wang R, Wu Y (2016a) Dynamic transition of neuronal firing induced by abnormal astrocytic glutamate oscillation. Sci Rep 6:32343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Wang R, Du M, Tang J, Wu Y (2016b) Dynamic transition on the seizure-like neuronal activity by astrocytic calcium channel block. Chaos Solitons Fractals 91:702–708

    Article  Google Scholar 

  • Li J-J, Du M-M, Wang R, Lei J-Z, Wu Y (2016c) Astrocytic gliotransmitter: diffusion dynamics and induction of information processing on tripartite synapses. Int J Bifurcat Chaos 26(8):1650138

    Article  Google Scholar 

  • Linne M-L, Jalonen TO (2014) Astrocyte-neuron interactions: from experimental research-based models to translational medicine. Prog Mol Biol Transl Sci 123:191–217

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li C (2013) Stochastic resonance in feedforward-loop neuronal network motifs in astrocyte field. J Theor Biol 335:265–275

    Article  PubMed  Google Scholar 

  • Liu J, Harkin J, Maguire LP, McDaid LJ, Wade JJ, Martin G (2016) Scalable networks-on-chip interconnected architecture for astrocyte-neuron networks. IEEE Trans Circuits Syst I Reg Papers 63(12):2290–2303

    Article  Google Scholar 

  • López-Caamal F, Oyarzún DA, Middleton RH, García MR (2014) Spatial quantification of cytosolic Ca\(^{2+}\) accumulation in nonexcitable cells: an analytical study. IEEE/ACM Trans Comput Biol Bioinform 11(3):592–603

    Article  PubMed  CAS  Google Scholar 

  • MacDonald CL, Silva GA (2013) A positive feedback cell signaling nucleation model of astrocyte dynamics. Front Neuroeng 6:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacDonald CL, Yu D, Buibas M, Silva GA (2008) Diffusion modeling of ATP signaling suggests a partially regenerative mechanism underlies astrocyte intercellular calcium waves. Front Neuroeng 1:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86(4):883–901

    Article  CAS  PubMed  Google Scholar 

  • Manninen T, Hituri K, Hellgren Kotaleski J, Blackwell KT, Linne M-L (2010) Postsynaptic signal transduction models for long-term potentiation and depression. Front Comput Neurosci 4:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Manninen T, Hituri K, Toivari E, Linne M-L (2011) Modeling signal transduction leading to synaptic plasticity: evaluation and comparison of five models. EURASIP J Bioinf Syst Biol 2011:797250

    Article  Google Scholar 

  • Manninen T, Havela R, Linne M-L (2017) Reproducibility and comparability of computational models for astrocyte calcium excitability. Front Neuroinform 11:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Manninen T, Aćimović J, Havela R, Teppola H, Linne M-L (2018a) Challenges in reproducibility, replicability, and comparability of computational models and tools for neuronal and glial networks, cells, and subcellular structures. Front Neuroinform 12:20

    Google Scholar 

  • Manninen T, Havela R, Linne M-L (2018b) Computational models for calcium-mediated astrocyte functions. Front Comput Neurosci 12:14

    Google Scholar 

  • Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A, Alonso-Nanclares L, Antille N, Arsever S et al (2015) Reconstruction and simulation of neocortical microcircuitry. Cell 163(2):456–492

    Article  CAS  PubMed  Google Scholar 

  • Matrosov VV, Kazantsev VB (2011) Bifurcation mechanisms of regular and chaotic network signaling in brain astrocytes. Chaos 21(2):023103

    Article  CAS  PubMed  Google Scholar 

  • Migliore M, Morse TM, Davison AP, Marenco L, Shepherd GM, Hines ML (2003) ModelDB: making models publicly accessible to support computational neuroscience. Neuroinformatics 1(1):135–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Min R, Santello M, Nevian T (2012) The computational power of astrocyte mediated synaptic plasticity. Front Comput Neurosci 6:93

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35(1):193–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadkarni S, Jung P (2003) Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? Phys Rev Lett 91(26):268101

    Article  PubMed  CAS  Google Scholar 

  • Nadkarni S, Jung P (2004) Dressed neurons: modeling neural-glial interactions. Phys Biol 1(1):35

    Article  CAS  PubMed  Google Scholar 

  • Nadkarni S, Jung P (2005) Synaptic inhibition and pathologic hyperexcitability through enhanced neuron-astrocyte interaction: a modeling study. J Integr Neurosci 4(2):207–226

    Article  PubMed  Google Scholar 

  • Nadkarni S, Jung P (2007) Modeling synaptic transmission of the tripartite synapse. Phys Biol 4(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Nadkarni S, Jung P, Levine H (2008) Astrocytes optimize the synaptic transmission of information. PLoS Comput Biol 4(5):e1000088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naeem M, McDaid LJ, Harkin J, Wade JJ, Marsland J (2015) On the role of astroglial syncytia in self-repairing spiking neural networks. IEEE Trans Neural Netw Learn Syst 26(10):2370–2380

    Article  PubMed  Google Scholar 

  • Navarrete M, Araque A (2010) Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron 68(1):113–126

    Article  CAS  PubMed  Google Scholar 

  • Navarrete M, Perea G, de Sevilla DF, Gómez-Gonzalo M, Núñez A, Martín ED, Araque A (2012) Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol 10(2):e1001259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazari S, Faez K, Karami E, Amiri M (2014) A digital neurmorphic circuit for a simplified model of astrocyte dynamics. Neurosci Lett 582:21–26

    Article  CAS  PubMed  Google Scholar 

  • Nazari S, Amiri M, Faez K, Amiri M (2015a) Multiplier-less digital implementation of neuron-astrocyte signalling on FPGA. Neurocomputing 164:281–292

    Article  Google Scholar 

  • Nazari S, Faez K, Amiri M, Karami E (2015b) A digital implementation of neuron-astrocyte interaction for neuromorphic applications. Neural Netw 66:79–90

    Article  PubMed  Google Scholar 

  • Nazari S, Faez K, Amiri M, Karami E (2015c) A novel digital implementation of neuron-astrocyte interactions. J Comput Electron 14(1):227–239

    Article  Google Scholar 

  • Newman EA, Zahs KR (1997) Calcium waves in retinal glial cells. Science 275(5301):844–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimmerjahn A (2009) Astrocytes going live: advances and challenges. J Physiol 587(8):1639–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordlie E, Gewaltig M-O, Plesser HE (2009) Towards reproducible descriptions of neuronal network models. PLoS Comput Biol 5(8):e1000456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Occhipinti R, Somersalo E, Calvetti D (2009) Astrocytes as the glucose shunt for glutamatergic neurons at high activity: an in silico study. J Neurophysiol 101(5):2528–2538

    Article  CAS  PubMed  Google Scholar 

  • Occhipinti R, Somersalo E, Calvetti D (2010) Energetics of inhibition: insights with a computational model of the human GABAergic neuron-astrocyte cellular complex. J Cereb Blood Flow Metab 30(11):1834–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oku Y, Fresemann J, Miwakeichi F, Hülsmann S (2016) Respiratory calcium fluctuations in low-frequency oscillating astrocytes in the pre-Bötzinger complex. Respir Physiol Neurobiol 226:11–17

    Article  CAS  PubMed  Google Scholar 

  • Olufsen MS, Whittington MA, Camperi M, Kopell N (2003) New roles for the gamma rhythm: population tuning and preprocessing for the beta rhythm. J Comput Neurosci 14(1):33–54

    Article  PubMed  Google Scholar 

  • Øyehaug L, Østby I, Lloyd CM, Omholt SW, Einevoll GT (2012) Dependence of spontaneous neuronal firing and depolarisation block on astroglial membrane transport mechanisms. J Comput Neurosci 32(1):147–165

    Article  PubMed  Google Scholar 

  • Panatier A, Vallée J, Haber M, Murai KK, Lacaille J-C, Robitaille R (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146(5):785–798

    Article  CAS  PubMed  Google Scholar 

  • Parpura V (2004) Glutamate-mediated bi-directional signaling between neurons and astrocytes. In: Hatton GI, Parpura V (eds) Glial \(\Leftrightarrow \) neuronal signaling. Springer, Berlin, pp 365–395

    Chapter  Google Scholar 

  • Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747

    Article  CAS  PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91(22):10625–10629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perea G, Araque A (2007) Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317(5841):1083–1086

    Article  CAS  PubMed  Google Scholar 

  • Peters O, Schipke CG, Hashimoto Y, Kettenmann H (2003) Different mechanisms promote astrocyte Ca\(^{2+}\) waves and spreading depression in the mouse neocortex. J Neurosci 23(30):9888–9896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettinen A, Aho T, Smolander O-P, Manninen T, Saarinen A, Taattola K-L, Yli-Harja O, Linne M-L (2005) Simulation tools for biochemical networks: evaluation of performance and usability. Bioinformatics 21(3):357–363

    Article  CAS  PubMed  Google Scholar 

  • Pinsky PF, Rinzel J (1994) Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J Comput Neurosci 1(1):39–60

    Article  CAS  PubMed  Google Scholar 

  • Piri M, Amiri M, Amiri M (2015) A bio-inspired stimulator to desynchronize epileptic cortical population models: a digital implementation framework. Neural Netw 67:74–83

    Article  PubMed  Google Scholar 

  • Porto-Pazos AB, Veiguela N, Mesejo P, Navarrete M, Alvarellos A, Ibáñez O, Pazos A, Araque A (2011) Artificial astrocytes improve neural network performance. PLoS ONE 6(4):e19109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postnov DE, Ryazanova LS, Sosnovtseva OV (2007) Functional modeling of neural-glial interaction. BioSystems 89(1):84–91

    Article  CAS  PubMed  Google Scholar 

  • Postnov DE, Ryazanova LS, Brazhe NA, Brazhe AR, Maximov GV, Mosekilde E, Sosnovtseva OV (2008) Giant glial cell: new insight through mechanism-based modeling. J Biol Phys 34(3–4):441–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postnov DE, Koreshkov RN, Brazhe NA, Brazhe AR, Sosnovtseva OV (2009) Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J Biol Phys 35(4):425–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranjbar M, Amiri M (2015) An analog astrocyte-neuron interaction circuit for neuromorphic applications. J Comput Electron 14(3):694–706

    Article  CAS  Google Scholar 

  • Ranjbar M, Amiri M (2016) Analog implementation of neuron-astrocyte interaction in tripartite synapse. J Comput Electron 15(1):311–323

    Article  Google Scholar 

  • Reato D, Cammarota M, Parra LC, Carmignoto G (2012) Computational model of neuron-astrocyte interactions during focal seizure generation. Front Comput Neurosci 6:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Riera J, Hatanaka R, Ozaki T, Kawashima R (2011a) Modeling the spontaneous Ca\(^{2+}\) oscillations in astrocytes: inconsistencies and usefulness. J Integr Neurosci 10(4):439–473

    Article  CAS  PubMed  Google Scholar 

  • Riera J, Hatanaka R, Uchida T, Ozaki T, Kawashima R (2011b) Quantifying the uncertainty of spontaneous Ca\(^{2+}\) oscillations in astrocytes: particulars of Alzheimer’s disease. Biophys J 101(3):554–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth BJ, Yagodin SV, Holtzclaw L, Russell JT (1995) A mathematical model of agonist-induced propagation of calcium waves in astrocytes. Cell Calcium 17(1):53–64

    Article  CAS  PubMed  Google Scholar 

  • Shigetomi E, Kracun S, Sofroniew MV, Khakh BS (2010) A genetically targeted optical sensor to monitor calcium signals in astrocyte processes. Nat Neurosci 13(6):759–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuai J-W, Jung P (2002) Stochastic properties of Ca\(^{2+}\) release of inositol 1, 4, 5-trisphosphate receptor clusters. Biophys J 83(1):87–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silchenko AN, Tass PA (2008) Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biol Cybern 98(1):61–74

    Article  PubMed  Google Scholar 

  • Skupin A, Kettenmann H, Falcke M (2010) Calcium signals driven by single channel noise. PLoS Comput Biol 6(8):e1000870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soleimani H, Bavandpour M, Ahmadi A, Abbott D (2015) Digital implementation of a biological astrocyte model and its application. IEEE Trans Neural Netw Learn Syst 26(1):127–139

    Article  PubMed  Google Scholar 

  • Somjen GG, Kager H, Wadman WJ (2008) Computer simulations of neuron-glia interactions mediated by ion flux. J Comput Neurosci 25(2):349–365

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis M, Mantzaris NV (2006) Modeling of ATP-mediated signal transduction and wave propagation in astrocytic cellular networks. J Theor Biol 241(3):649–668

    Article  CAS  PubMed  Google Scholar 

  • Suffczynski P, Kalitzin S, Lopes Da Silva FH (2004) Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126(2):467–484

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Luo J-M, Ma J (2013) Information transmission in a neuron-astrocyte coupled model. PLoS ONE 8(11):e80324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang J, Liu T-B, Ma J, Luo J-M, Yang X-Q (2016) Effect of calcium channel noise in astrocytes on neuronal transmission. Commun Nonlinear Sci Numer Simul 32:262–272

    Article  Google Scholar 

  • Tewari S, Majumdar K (2012a) A mathematical model for astrocytes mediated LTP at single hippocampal synapses. J Comput Neurosci 33(2):341–370

    Article  PubMed  Google Scholar 

  • Tewari SG, Majumdar KK (2012b) A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity. J Biol Phys 38(3):465–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Tewari S, Parpura V (2013) A possible role of astrocytes in contextual memory retrieval: an analysis obtained using a quantitative framework. Front Comput Neurosci 7:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Tewari S, Parpura V (2014) Data and model tango to aid the understanding of astrocyte-neuron signaling. Front Comput Neurosci 8:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Toivari E, Manninen T, Nahata AK, Jalonen TO, Linne M-L (2011) Effects of transmitters and amyloid-beta peptide on calcium signals in rat cortical astrocytes: Fura-2AM measurements and stochastic model simulations. PLoS ONE 6(3):e17914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topalidou M, Leblois A, Boraud T, Rougier NP (2015) A long journey into reproducible computational neuroscience. Front Comput Neurosci 9:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Traub RD, Wong RK, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66(2):635–650

    Article  CAS  PubMed  Google Scholar 

  • Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci U S A 94(2):719–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah G, Jung P, Cornell-Bell AH (2006) Anti-phase calcium oscillations in astrocytes via inositol (1, 4, 5)-trisphosphate regeneration. Cell Calcium 39(3):197–208

    Article  CAS  PubMed  Google Scholar 

  • Ullah G, Cressman JR Jr, Barreto E, Schiff SJ (2009) The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics. J Comput Neurosci 26(2):171–183

    Article  PubMed  Google Scholar 

  • Valenza G, Pioggia G, Armato A, Ferro M, Scilingo EP, De Rossi D (2011) A neuron-astrocyte transistor-like model for neuromorphic dressed neurons. Neural Netw 24(7):679–685

    Article  CAS  PubMed  Google Scholar 

  • Volman V, Ben-Jacob E, Levine H (2007) The astrocyte as a gatekeeper of synaptic information transfer. Neural Comput 19(2):303–326

    Article  PubMed  Google Scholar 

  • Volman V, Bazhenov M, Sejnowski TJ (2012) Computational models of neuron-astrocyte interaction in epilepsy. Front Comput Neurosci 6:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Volman V, Bazhenov M, Sejnowski TJ (2013) Divide and conquer: functional segregation of synaptic inputs by astrocytic microdomains could alleviate paroxysmal activity following brain trauma. PLoS Comput Biol 9(1):e1002856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volterra A, Liaudet N, Savtchouk I (2014) Astrocyte Ca\(^{2+}\) signalling: an unexpected complexity. Nat Rev Neurosci 15(5):327–335

    Article  CAS  PubMed  Google Scholar 

  • Wade JJ, McDaid LJ, Harkin J, Crunelli V, Kelso JAS (2011) Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach. PLoS ONE 6(12):e29445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wade J, McDaid L, Harkin J, Crunelli V, Kelso S (2012) Self-repair in a bidirectionally coupled astrocyte-neuron (AN) system based on retrograde signaling. Front Comput Neurosci 6:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Wade J, McDaid L, Harkin J, Crunelli V, Kelso S (2013) Biophysically based computational models of astrocyte neuron coupling and their functional significance. Front Comput Neurosci 7:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallach G, Lallouette J, Herzog N, De Pittà M, Jacob EB, Berry H, Hanein Y (2014) Glutamate mediated astrocytic filtering of neuronal activity. PLoS Comput Biol 10(12):e1003964

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Lou N, Xu Q, Tian G-F, Peng WG, Han X, Kang J, Takano T, Nedergaard M (2006) Astrocytic Ca\(^{2+}\) signaling evoked by sensory stimulation in vivo. Nat Neurosci 9(6):816–823

    Article  CAS  PubMed  Google Scholar 

  • Wei F, Shuai J (2011) Intercellular calcium waves in glial cells with bistable dynamics. Phys Biol 8(2):026009

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Yeo CK (2015) Conceptual network model from sensory neurons to astrocytes of the human nervous system. IEEE Trans Biomed Eng 62(7):1843–1852

    Article  PubMed  Google Scholar 

  • Zeng S, Li B, Zeng S, Chen S (2009) Simulation of spontaneous Ca\(^{2+}\) oscillations in astrocytes mediated by voltage-gated calcium channels. Biophys J 97(9):2429–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received partial funding from the European Union Seventh Framework Programme (FP7) under grant agreement No. 604102 (HBP), European Union’s Horizon 2020 research and innovation programme under grant agreement No. 720270, and Academy of Finland (decision Nos. 297893, 315795, and 320072). The authors wish to thank Tampere University of Technology Graduate School, Emil Aaltonen Foundation, The Finnish Concordia Fund, and Ulla Tuominen Foundation for support for R.H. This work was submitted on October 25th, 2015, and accepted on January 5th, 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marja-Leena Linne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manninen, T., Havela, R., Linne, ML. (2019). Computational Models of Astrocytes and Astrocyte–Neuron Interactions: Characterization, Reproducibility, and Future Perspectives. In: De Pittà, M., Berry, H. (eds) Computational Glioscience. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-00817-8_16

Download citation

Publish with us

Policies and ethics