Skip to main content

The Role of Astrocytes in Neurotransmitter Uptake and Brain Metabolism

  • Chapter
  • First Online:
Computational Glioscience

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

Abstract

Termination of synaptic transmission relies on neurotransmitter diffusion and removal from the extracellular space by specific molecules called transporters, abundantly expressed in astrocytes. Here we describe the biophysical mechanisms of neurotransmitter transport across the astrocyte membrane and the biochemical pathways that supply energy to these cells. These findings indicate that astrocytes are crucial regulators of brain activity, due to their ability to shape synaptic transmission and control the energy budget of the entire brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzalov R, Pryazhnikov E, Shih PY, Kondratskaya E, Zobova S, Leino S et al (2013) Low micromolar Ba(2+) potentiates glutamate transporter current in hippocampal astrocytes. Front Cell Neurosci 7:135

    Google Scholar 

  • Akyuz N, Altman RB, Blanchard SC, Boudker O (2013) Transport dynamics in a glutamate transporter homologue. Nature 502(7469):114–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asztely F, Erdemli G, Kullmann DM (1997) Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron 18(2):281–293

    Article  CAS  PubMed  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145

    Article  CAS  Google Scholar 

  • Attwell D, Barbour B, Szatkowski M (1993) Nonvesicular release of neurotransmitter. Neuron 11(3):401–417

    Article  CAS  PubMed  Google Scholar 

  • Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468(7321):232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aubert A, Costalat R (2005) Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism. J Cereb Blood Flow Metab 25(11):1476–1490

    Article  CAS  Google Scholar 

  • Aubert A, Pellerin L, Magistretti PJ, Costalat R (2007) A coherent neurobiological framework for functional neuroimaging provided by a model integrating compartmentalized energy metabolism. Proc Natl Acad Sci USA 104(10):4188–4193

    Article  CAS  Google Scholar 

  • Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98(3):641–653

    Article  CAS  PubMed  Google Scholar 

  • Barbour B (2001) An evaluation of synapse independence. J Neurosci 21(20):7969–7984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Peled O, Ben-Hur H, Biegon A, Groner Y, Dewhurst S, Furuta A et al (1997) Distribution of glutamate transporter subtypes during human brain development. J Neurochem 69(6):2571–2580

    Article  Google Scholar 

  • Belanger M, Yang J, Petit JM, Laroche T, Magistretti PJ, Allaman I (2011) Role of the glyoxalase system in astrocyte-mediated neuroprotection. J Neurosci 31(50):18338–18352

    Article  CAS  PubMed  Google Scholar 

  • Belanger M, Allaman I, Magistretti PJ (2015) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738

    Article  PubMed  CAS  Google Scholar 

  • Bergles DE, Jahr CE (1997) Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19(6):1297–308

    Article  CAS  PubMed  Google Scholar 

  • Bergles DE, Jahr CE (1998) Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J Neurosci 18(19):7709–7716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergles DE, Tzingounis AV, Jahr CE (2002) Comparison of coupled and uncoupled currents during glutamate uptake by GLT-1 transporters. J Neurosci 22(23):10153–10162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bicho A, Grewer C (2005) Rapid substrate-induced charge movements of the GABA transporter GAT1. Biophys J 89(1):211–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cammack JN, Schwartz EA (1996) Channel behavior in a gamma-aminobutyrate transporter. Proc Natl Acad Sci USA 93(2):723–727

    Article  CAS  Google Scholar 

  • Chatton JY, Pellerin L, Magistretti PJ (2003) GABA uptake into astrocytes is not associated with significant metabolic cost: implications for brain imaging of inhibitory transmission. Proc Natl Acad Sci USA 100(21):12456–12461

    Article  CAS  Google Scholar 

  • Chiu DN, Jahr CE (2017) Extracellular glutamate in the nucleus accumbens is nanomolar in both synaptic and non-synaptic compartments. Cell Rep 18(11):2576–2583

    Article  CAS  PubMed  Google Scholar 

  • Choi HB, Gordon GR, Zhou N, Tai C, Rungta RL, Martinez J et al (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75(6):1094–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14(5):311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz NF, Lasater A, Zielke HR, Dienel GA (2005) Activation of astrocytes in brain of conscious rats during acoustic stimulation: acetate utilization in working brain. J Neurochem 92(4):934–947

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    Article  CAS  PubMed  Google Scholar 

  • De Saint Jan D, Westbrook GL (2005) Detecting activity in olfactory bulb glomeruli with astrocyte recording. J Neurosci 25(11):2917–2924

    Google Scholar 

  • DeSilva TM, Borenstein NS, Volpe JJ, Kinney HC, Rosenberg PA (2012) Expression of EAAT2 in neurons and protoplasmic astrocytes during human cortical development. J Comp Neurol 520(17):3912–3932

    Article  CAS  Google Scholar 

  • Diamond JS (2005) Deriving the glutamate clearance time course from transporter currents in CA1 hippocampal astrocytes: transmitter uptake gets faster during development. J Neurosci 25(11):2906–2916

    Article  CAS  PubMed  Google Scholar 

  • Diamond JS, Bergles DE, Jahr CE (1998) Glutamate release monitored with astrocyte transporter currents during LTP. Neuron 21(2):425–433

    Article  CAS  PubMed  Google Scholar 

  • Dienel GA, Wang RY, Cruz NF (2002) Generalized sensory stimulation of conscious rats increases labeling of oxidative pathways of glucose metabolism when the brain glucose-oxygen uptake ratio rises. J Cereb Blood Flow Metab 22(12):1490–1502

    Article  CAS  Google Scholar 

  • DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Changes in glucose uptake rather than lactate shuttle take center stage in subserving neuroenergetics: evidence from mathematical modeling. J Cereb Blood Flow Metab 30(3):586–602

    Article  CAS  Google Scholar 

  • Eckstein-Ludwig U, Fei J, Schwarz W (1999) Inhibition of uptake, steady-state currents, and transient charge movements generated by the neuronal GABA transporter by various anticonvulsant drugs. Br J Pharmacol 128(1):92–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuta A, Rothstein JD, Martin LJ (1997) Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J Neurosci 17(21):8363–8375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzales AL, Lee W, Spencer SR, Oropeza RA, Chapman JV, Ku JY et al (2007) Turnover rate of the gamma-aminobutyric acid transporter GAT1. J Membr Biol 220(1–3):33–51

    Google Scholar 

  • Grewer C, Watzke N, Wiessner M, Rauen T (2000) Glutamate translocation of the neuronal glutamate transporter EAAC1 occurs within milliseconds. Proc Natl Acad Sci USA 97(17):9706–9711

    Article  CAS  Google Scholar 

  • Grewer C, Balani P, Weidenfeller C, Bartusel T, Tao Z, Rauen T (2005) Individual subunits of the glutamate transporter EAAC1 homotrimer function independently of each other. Biochemistry 44(35):11913–11923

    Article  CAS  PubMed  Google Scholar 

  • Halim ND, McFate T, Mohyeldin A, Okagaki P, Korotchkina LG, Patel MS et al (2010) Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons. Glia 58(10):1168–1176

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanson E, Armbruster M, Cantu D, Andresen L, Taylor A, Danbolt NC et al (2015) Astrocytic glutamate uptake is slow and does not limit neuronal NMDA receptor activation in the neonatal neocortex. Glia

    Google Scholar 

  • He Y, Janssen WG, Rothstein JD, Morrison JH (2000) Differential synaptic localization of the glutamate transporter EAAC1 and glutamate receptor subunit GluR2 in the rat hippocampus. J Comp Neurol 418(3):255–269

    Article  CAS  PubMed  Google Scholar 

  • Herman MA, Jahr CE (2007) Extracellular glutamate concentration in hippocampal slice. J Neurosci 27(36):9736–9741

    Article  CAS  PubMed  Google Scholar 

  • Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27(2):219–249

    Article  CAS  Google Scholar 

  • Hilgemann DW, Lu CC (1999) GAT1 (GABA: Na+: Cl-) cotransport function. Database reconstruction with an alternating access model. J Gen Physiol 114(3):459–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hof PR, Pascale E, Magistretti PJ (1988) K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+ -dependent glycogen hydrolysis in mouse cerebral cortex. J Neurosci 8(6):1922–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmseth S, Dehnes Y, Huang YH, Follin-Arbelet VV, Grutle NJ, Mylonakou MN et al (2012) The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci 32(17):6000–6013

    Article  CAS  PubMed  Google Scholar 

  • Huang YH, Sinha SR, Tanaka K, Rothstein JD, Bergles DE (2004) Astrocyte glutamate transporters regulate metabotropic glutamate receptor-mediated excitation of hippocampal interneurons. J Neurosci 24(19):4551–4559

    Article  CAS  PubMed  Google Scholar 

  • Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG (2006) Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab 26(7):865–877

    Article  CAS  Google Scholar 

  • Itoh Y, Esaki T, Shimoji K, Cook M, Law MJ, Kaufman E et al (2003) Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci USA 100(8):4879–4884

    Article  CAS  Google Scholar 

  • Jolivet R, Magistretti PJ, Weber B (2009) Deciphering neuron-glia compartmentalization in cortical energy metabolism. Front Neuroenergetics 1:4

    Google Scholar 

  • Jolivet R, Allaman I, Pellerin L, Magistretti PJ, Weber B (2010) Comment on recent modeling studies of astrocyte-neuron metabolic interactions. J Cereb Blood Flow Metab 30(12):1982–1986

    Article  CAS  Google Scholar 

  • Kavanaugh MP, Arriza JL, North RA, Amara SG (1992) Electrogenic uptake of gamma-aminobutyric acid by a cloned transporter expressed in Xenopus oocytes. J Biol Chem 267(31):22007–22009

    Google Scholar 

  • Koch HP, Larsson HP (2005) Small-scale molecular motions accomplish glutamate uptake in human glutamate transporters. J Neurosci 25(7):1730–1736

    Article  CAS  PubMed  Google Scholar 

  • Koch HP, Brown RL, Larsson HP (2007) The glutamate-activated anion conductance in excitatory amino acid transporters is gated independently by the individual subunits. J Neurosci 27(11):2943–2947

    Article  CAS  PubMed  Google Scholar 

  • Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18(21):8751–8757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lennie P (2003) The cost of cortical computation. Curr Biol 13(6):493–497

    Article  CAS  PubMed  Google Scholar 

  • Levy LM, Warr O, Attwell D (1998) Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J Neurosci 18(23):9620–9628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Eckstein-Ludwig U, Fei J, Schwarz W (1998) Effect of mutation of glycosylation sites on the Na+ dependence of steady-state and transient currents generated by the neuronal GABA transporter. Biochim Biophys Acta 1415(1):246–254

    Article  CAS  Google Scholar 

  • Mager S, Naeve J, Quick M, Labarca C, Davidson N, Lester HA (1993) Steady states, charge movements, and rates for a cloned GABA transporter expressed in Xenopus oocytes. Neuron 10(2):177–188

    Article  CAS  PubMed  Google Scholar 

  • Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86(4):883–901

    Article  CAS  PubMed  Google Scholar 

  • Magistretti PJ, Morrison JH, Shoemaker WJ, Sapin V, Bloom FE (1981) Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism. Proc Natl Acad Sci USA 78(10):6535–6539

    Article  CAS  Google Scholar 

  • Mangia S, Giove F, Tkac I, Logothetis NK, Henry PG, Olman CA et al (2009) Metabolic and hemodynamic events after changes in neuronal activity: current hypotheses, theoretical predictions and in vivo NMR experimental findings. J Cereb Blood Flow Metab 29(3):441–463

    Article  CAS  Google Scholar 

  • Mangia S, DiNuzzo M, Giove F, Carruthers A, Simpson IA, Vannucci SJ (2011) Response to ‘comment on recent modeling studies of astrocyte-neuron metabolic interactions’: much ado about nothing. J Cereb Blood Flow Metab 31(6):1346–1353

    Article  CAS  Google Scholar 

  • Marcaggi P, Attwell D (2004) Role of glial amino acid transporters in synaptic transmission and brain energetics. Glia 47(3):217–225

    Google Scholar 

  • McKenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85(15):3347–3358

    Article  CAS  PubMed  Google Scholar 

  • Melone M, Barbaresi P, Fattorini G, Conti F (2005) Neuronal localization of the GABA transporter GAT-3 in human cerebral cortex: a procedural artifact? J Chem Neuroanat 30(1):45–54

    Article  CAS  PubMed  Google Scholar 

  • Mennerick S, Shen W, Xu W, Benz A, Tanaka K, Shimamoto K et al (1999) Substrate turnover by transporters curtails synaptic glutamate transients. J Neurosci 19(21):9242–9251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milton ID, Banner SJ, Ince PG, Piggott NH, Fray AE, Thatcher N et al (1997) Expression of the glial glutamate transporter EAAT2 in the human CNS: an immunohistochemical study. Brain Res Mol Brain Res 52(1):17–31

    Article  CAS  PubMed  Google Scholar 

  • Minelli A, DeBiasi S, Brecha NC, Zuccarello LV, Conti F (1996) GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci 16(19):6255–6264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman EA (1993) Inward-rectifying potassium channels in retinal glial (Muller) cells. J Neurosci 13(8):3333–3345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obel LF, Muller MS, Walls AB, Sickmann HM, Bak LK, Waagepetersen HS et al (2012) Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenergetics 4:3

    Google Scholar 

  • Otis TS, Kavanaugh MP (2000) Isolation of current components and partial reaction cycles in the glial glutamate transporter EAAT2. J Neurosci 20(8):2749–2757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owe SG, Marcaggi P, Attwell D (2006) The ionic stoichiometry of the GLAST glutamate transporter in salamander retinal glia. J Physiol 577(Pt 2):591–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer MJ, Taschenberger H, Hull C, Tremere L, von Gersdorff H (2003) Synaptic activation of presynaptic glutamate transporter currents in nerve terminals. J Neurosci 23(12):4831–4841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parpura V, Verkhratsky A (2012a) The astrocyte excitability brief: from receptors to gliotransmission. Neurochem Int 61(4):610–621

    Article  CAS  PubMed  Google Scholar 

  • Parpura V, Verkhratsky A (2012b) Astrocytes revisited: concise historic outlook on glutamate homeostasis and signaling. Croat Med J 53(6):518–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91(22):10625–10629

    Article  CAS  Google Scholar 

  • Picaud S, Larsson HP, Wellis DP, Lecar H, Werblin F (1995) Cone photoreceptors respond to their own glutamate release in the tiger salamander. Proc Natl Acad Sci USA 92(20):9417–9421

    Article  CAS  Google Scholar 

  • Pow DV, Sullivan RK, Williams SM, Scott HL, Dodd PR, Finkelstein D (2005) Differential expression of the GABA transporters GAT-1 and GAT-3 in brains of rats, cats, monkeys and humans. Cell Tissue Res 320(3):379–392

    Article  CAS  PubMed  Google Scholar 

  • Radian R, Kanner BI (1983) Stoichiometry of sodium- and chloride-coupled gamma-aminobutyric acid transport by synaptic plasma membrane vesicles isolated from rat brain. Biochemistry 22(5):1236–1241

    Article  CAS  PubMed  Google Scholar 

  • Radian R, Bendahan A, Kanner BI (1986) Purification and identification of the functional sodium- and chloride-coupled gamma-aminobutyric acid transport glycoprotein from rat brain. J Biol Chem 261(33):15437–15441

    Google Scholar 

  • Reyes N, Ginter C, Boudker O (2009) Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462(7275):880–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribak CE, Tong WM, Brecha NC (1996) GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J Comp Neurol 367(4):595–606

    Google Scholar 

  • Risso S, DeFelice LJ, Blakely RD (1996) Sodium-dependent GABA-induced currents in GAT1-transfected HeLa cells. J Physiol 490(Pt 3):691–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusakov DA, Kullmann DM (1998a) Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. J Neurosci 18(9):3158–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusakov DA, Kullmann DM (1998b) A tortuous and viscous route to understanding diffusion in the brain. Trends Neurosci 21(11):469–470

    Article  CAS  PubMed  Google Scholar 

  • Scimemi A, Beato M (2009) Determining the neurotransmitter concentration profile at active synapses. Mol Neurobiol 40(3):289–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scimemi A, Diamond JS (2013) Deriving the time course of glutamate clearance with a deconvolution analysis of astrocytic transporter currents. J Vis Exp (78)

    Google Scholar 

  • Scimemi A, Fine A, Kullmann DM, Rusakov DA (2004) NR2B-containing receptors mediate cross talk among hippocampal synapses. J Neurosci 24(20):4767–4777

    Article  CAS  PubMed  Google Scholar 

  • Scimemi A, Tian H, Diamond JS (2009) Neuronal transporters regulate glutamate clearance, NMDA receptor activation, and synaptic plasticity in the hippocampus. J Neurosci 29(46):14581–14595

    Article  CAS  PubMed  Google Scholar 

  • Scimemi A, Meabon JS, Woltjer RL, Sullivan JM, Diamond JS, Cook DG (2013) Amyloid-beta1–42 slows clearance of synaptically released glutamate by mislocalizing astrocytic GLT-1. J Neurosci 33(12):5312–5318

    Article  CAS  PubMed  Google Scholar 

  • Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27(11):1766–1791

    Article  CAS  Google Scholar 

  • Sorg O, Magistretti PJ (1991) Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes. Brain Res 563(1–2):227–233

    Article  CAS  PubMed  Google Scholar 

  • Sorg O, Pellerin L, Stolz M, Beggah S, Magistretti PJ (1995) Adenosine triphosphate and arachidonic acid stimulate glycogenolysis in primary cultures of mouse cerebral cortical astrocytes. Neurosci Lett 188(2):109–112

    Article  CAS  PubMed  Google Scholar 

  • Sweeney AM, Fleming KE, McCauley JP, Rodriguez MF, Martin ET, Sousa AA et al (2017) PAR1 activation induces rapid changes in glutamate uptake and astrocyte morphology. Sci Rep 7:43606

    Google Scholar 

  • Stobart JL, Anderson CM (2013) Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front Cell Neurosci 7:38

    Google Scholar 

  • Stogsdill JA, Eroglu C (2017) The interplay between neurons and glia in synapse development and plasticity. Curr Opin Neurobiol 42:1–8

    Article  CAS  PubMed  Google Scholar 

  • Swanson RA, Morton MM, Sagar SM, Sharp FR (1992) Sensory stimulation induces local cerebral glycogenolysis: demonstration by autoradiography. Neuroscience 51(2):451–461

    Article  CAS  PubMed  Google Scholar 

  • Tzingounis AV, Wadiche JI (2007) Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci 8(12):935–947

    Article  CAS  PubMed  Google Scholar 

  • Veruki ML, Morkve SH, Hartveit E (2006) Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling. Nat Neurosci 9(11):1388–1396

    Article  CAS  PubMed  Google Scholar 

  • Wadiche JI, Kavanaugh MP (1998) Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel. J Neurosci 18(19):7650–7661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wadiche JI, Amara SG, Kavanaugh MP (1995) Ion fluxes associated with excitatory amino acid transport. Neuron 15(3):721–728

    Article  CAS  PubMed  Google Scholar 

  • Watzke N, Rauen T, Bamberg E, Grewer C (2000) On the mechanism of proton transport by the neuronal excitatory amino acid carrier 1. J Gen Physiol 116(5):609–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wersinger E, Schwab Y, Sahel JA, Rendon A, Pow DV, Picaud S et al (2006) The glutamate transporter EAAT5 works as a presynaptic receptor in mouse rod bipolar cells. J Physiol 577(Pt 1):221–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L (2013) Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K + homeostasis and glycogen usage in brain. Neurochem Res 38(3):472–485

    Article  PubMed  CAS  Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl–dependent neurotransmitter transporters. Nature 437(7056):215–223

    Article  CAS  PubMed  Google Scholar 

  • Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383(6601):634–637

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947

    Article  CAS  PubMed  Google Scholar 

  • Zheng K, Scimemi A, Rusakov DA (2008) Receptor actions of synaptically released glutamate: the role of transporters on the scale from nanometers to microns. Biophys J 95(10):4584–4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Scimemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scimemi, A. (2019). The Role of Astrocytes in Neurotransmitter Uptake and Brain Metabolism. In: De Pittà, M., Berry, H. (eds) Computational Glioscience. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-00817-8_12

Download citation

Publish with us

Policies and ethics