Skip to main content

Imaging and Analysis for the Orthodontic Patient

  • Chapter
  • First Online:
Book cover Craniofacial 3D Imaging

Abstract

Cone-beam computed tomography (CBCT) has become an integral component of orthodontic diagnosis and treatment planning. The leap from 2D to 3D analysis has allowed for a more comprehensive evaluation before, during, and after orthodontic therapy. CBCT has been instrumental in localizing impacted teeth; evaluating asymmetry, airway, and temporomandibular joint anatomy; selecting sites for temporary skeletal anchorage; and assessing root length and alveolar bone dimensions. In this chapter, CBCT imaging and analysis of the orthodontic patient will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ricketts RM. The evolution of diagnosis to computerized cephalometrics. Am J Orthod. 1969;55:795–803.

    Article  CAS  Google Scholar 

  2. Weems RA. Radiographic cephalometry technique. In: Jacobson A, Jacobson RL, editors. Radiographic cephalometry: from basics to 3-D imaging. Hanover Park, IL: Quintessence Publishing; 2006. p. 33–43.

    Google Scholar 

  3. Hounsfield GN. Computerized transverse axial scanning (tomography). Description of system. Br J Radiol. 1973;46:1016–22.

    Article  CAS  Google Scholar 

  4. The Nobel Prize in physiology or medicine 1979. https://www.nobelprize.org/nobel_prizes/medicine/laureates/1979/. Accessed 6 Sep 2016.

  5. Preston CB, Guan G. The relationship between conventional x-ray cephalometrics and cone-beam computed tomography. In: Park JH, editor. Computed tomography: new research. New York, NY: Nova Science Publishers, Inc.; 2013. p. 195–220.

    Google Scholar 

  6. Smith-Bindman R, Lipson J, Marcus R, Kim KP, Mahesh M, Gould R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169:2078–86.

    Article  Google Scholar 

  7. Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.

    Article  CAS  Google Scholar 

  8. Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol. 1998;8:1558–64.

    Article  CAS  Google Scholar 

  9. Cattaneo PM, Bloch CB, Calmar D, Hjortshoj M, Melsen B. Comparison between conventional and cone-beam computed tomography – generated cephalograms. Am J Orthod Dentofac Orthop. 2008;134:798–802.

    Article  Google Scholar 

  10. Agrawal JM, Agrawal MS, Nanjannawar LG, Parushetti AD. CBCT in orthodontics: the wave of future. J Contemp Dent Practice. 2013;14:153–7.

    Article  Google Scholar 

  11. Tai K, Yanagi Y, Park JH, Asaumi J. Clinical application of three-dimensional cone-beam computed tomography in orthodontics. In: Park JH, editor. Computed tomography: new research. New York, NY: Nova Science Publishers, Inc.; 2013. p. 255–66.

    Google Scholar 

  12. Park JH, Tai K, Owtad P. 3-Dimensional cone-beam computed tomography superimposition: a review. Semin Orthod. 2015;21:263–73.

    Article  Google Scholar 

  13. Cevidanes LH, Styner MA, Proffit WR. Image analysis and superimposition of 3-dimensional cone-beam computed tomography models. Am J Orthod Dentofac Orthop. 2006;129:611–8.

    Article  Google Scholar 

  14. da Motta AT, de Assis Ribeiro Carvalho F, Oliveira AE, Cevidanes LH, de Oliveira Almeida MA. Superimposition of 3D cone-beam CT models in orthognathic surgery. Dent Press J Orthod. 2010;15:39–41.

    Article  Google Scholar 

  15. Becker A, Chaushu S, Casap-Caspi N. Cone-beam computed tomography and the orthosurgical management of impacted teeth. JADA. 2010;141(Suppl 3):14S–8S.

    PubMed  Google Scholar 

  16. Kochel J, Meyer-Marcotty P, Strnad F, et al. 3D soft tissue analysis—part 1: sagittal parameters. J Orofac Orthop. 2010;71:40–52.

    Article  Google Scholar 

  17. Kochel J, Meyer-Marcotty P, Kochel M, et al. 3D soft tissue analysis—part 2: vertical parameters. J Orofac Orthop. 2010;71:207–20.

    Article  Google Scholar 

  18. Farronato G, Garagiola U, Dominici A, et al. “Ten-point” 3D cephalometric analysis using low-dosage cone beam computed tomography. Prog Orthod. 2010;11:2–12.

    Article  Google Scholar 

  19. Bayome M, Park JH, Kook YA. New three-dimensional cephalometric analyses among adults with a skeletal class I pattern and normal occlusion. Korean J Orthod. 2013;43:62–73.

    Article  Google Scholar 

  20. Harvold E. Cleft lip and palate: morphologic studies of the facial skeleton. Am J Orthod. 1954;40:493–506.

    Article  Google Scholar 

  21. Swennen GR, Schutyser F, Barth EL, De Groeve P, De Mey A. A new method of 3-D cephalometry part I: the anatomic Cartesian 3-D reference system. J Craniofac Surg. 2006;17:314–25.

    Article  Google Scholar 

  22. Park JU, Kook YA, Kim Y. Assessment of asymmetry in a normal occlusion sample and asymmetric patients with three-dimensional conebeam computed tomography: a study for a transverse reference plane. Angle Orthod. 2012;82:860–7.

    Article  Google Scholar 

  23. Kook YA, Kim Y. Evaluation of facial asymmetry with three-dimensional cone-beam computed tomography. J Clin Orthod. 2011;45:112–5.

    PubMed  Google Scholar 

  24. Gupta A, Kharbanda OP, Balachandran R, Sardana V, Kalra S, Chaurasia S, et al. Precision of manual landmark identification between as-received and oriented volume-rendered cone-beam computed tomography images. Am J Orthod Dentofac Orthop. 2017;151:118–31.

    Article  Google Scholar 

  25. Heon JC. Three-dimensional superimposition. PCSO Bull. 2010;82:23–6.

    Google Scholar 

  26. Kapila S, Conley RS, Harrell WE Jr. The current status of cone beam computed tomography imaging in orthodontics. Dentomaxillofac Radiol. 2011;40:24–34.

    Article  CAS  Google Scholar 

  27. Cevidanes LH, Heymann G, Cornelis MA, DeClerck HJ, Tulloch JF. Superimposition of 3-dimensional cone-beam computed tomography models of growing patients. Am J Orthod Dentofac Orthop. 2009;136:94–9.

    Article  Google Scholar 

  28. Mah JK, Yi L, Huang RC, Choo H. Advanced applications of cone beam computed tomography in orthodontics. Semin Orthod. 2011;17:57–71.

    Article  Google Scholar 

  29. Cevidanes LH, Oliveira AE, Grauer D, Styner M, Proffit WR. Clinical application of 3D imaging for assessment of treatment outcomes. Semin Orthod. 2011;17:72–80.

    Article  Google Scholar 

  30. Nguyen T, Cevidanes L, Paniagua B, Zhu H, Koerich L, De Clerck H. Use of shape correspondence analysis to quantify skeletal changes associated with bone-anchored class III correction. Angle Orthod. 2014;84:329–36.

    Article  Google Scholar 

  31. Tai K, Park JH, Mishima K, Shin JW. 3-Dimensional cone beam computed tomography analysis of transverse changes with Schwarz appliances on both jaws. Angle Orthod. 2011;81:670–7.

    Article  Google Scholar 

  32. Tai K, Park JH. Superimposition of 3-dimensional conebeam computed tomography for 2-dimensional image analysis. In: Park JH, editor. Computed tomography: new research. New York, NY: Nova Science Publishers, Inc.; 2013. p. 457–75.

    Google Scholar 

  33. Rayapudi N, Padmalatha C, Gandikopta CS, Yudhistar PV, Tircoveluri S. A comparative study of linear measurements of facial skeleton using computed tomography and traditional cephalometry. APOS Trends Orthod. 2013;3:7.

    Article  Google Scholar 

  34. Naudi KB, Benramadan R, Brocklebank L, Ju X, Khambay B, Ayoub A. The virtual human face: superimposing the simultaneously captured 3D photo realistic skin surface of the face on the untextured skin image of the CBCT scan. Int J Oral Maxillofac Surg. 2013;42:393–400.

    Article  CAS  Google Scholar 

  35. Tai K, Park JH, Mishima K, Hotokezaka H. Using superimposition of 3-dimensional cone-beam computed tomography images with surface-based registration in growing patients. J Clin Pediatr Dent. 2010;34:361–7.

    Article  Google Scholar 

  36. Tai K, Hotokezaka H, Park JH, Tai H, Miyajima K, Choi M, et al. Preliminary cone-beam computed tomography study evaluating dental and skeletal changes after treatment with a mandibular Schwarz appliance. Am J Orthod Dentofacial Orthop. 2010;138:262.e1–e11.

    Google Scholar 

  37. Gianquinto JR, Tuncay OC, Sciote JJ, Yang J. A method of superimposition of CBCT volumes in the posterior cranial base. Philadelphia, PA: The Temple University Digital Library. The Temple University; 2011.

    Google Scholar 

  38. Kau CH, Olim S, Nguyen JT. The future of orthodontic diagnostic records. Semin Orthod. 2011;17:6.

    Article  Google Scholar 

  39. Heymann GC, Cevidanes L, Cornelis M, DeClerck HJ, Tulloch JF. Three-dimensional analysis of maxillary protraction with intermaxillary elastics to miniplates. Am J Orthod Dentofac Orthop. 2010;137:274–84.

    Article  Google Scholar 

  40. Swennen GR, Mollemans W, DeClercq C, Abeloos J, Lamoral P, Lippens F, et al. A cone-beam computed tomography triple scan procedure to obtain a three-dimensional augmented virtual skull model appropriate for orthognathic surgery planning. J Craniofac Surg. 2009;20:297–307.

    Article  Google Scholar 

  41. Nada RM, Maal TJ, Breuning KH, Berge SJ, Mostafa YA, Kuijpers-Jagtman AM. Accuracy and reproducibility of voxel based superimposition of conebeam computed tomography models on the anterior cranial base and the zygomatic arches. PLoS One. 2011;6:e16520.

    Article  CAS  Google Scholar 

  42. Cevidanes LH, Motta A, Proffit WR, Ackerman JL, Styner M. Cranial base superimposition for 3-dimensional evaluation of soft-tissue changes. Am J Orthod Dentofac Orthop. 2010;137(Suppl 4):S120–9.

    Article  Google Scholar 

  43. Terajima M, Yanagita N, Ozeki K, Hoshino Y, Mori N, Goto TK, et al. Three-dimensional analysis system for orthognathic surgery patients with jaw deformities. Am J Orthod Dentofac Orthop. 2008;134:100–11.

    Article  Google Scholar 

  44. Grauer D, Cevidanes LS, Proffit WR. Working with DICOM craniofacial images. Am J Orthod Dentofac Orthop. 2009;136:460–70.

    Article  Google Scholar 

  45. Kau CH. Creation of the virtual patient for the study of facial morphology. Facial Plast Surg Clin North Am. 2011;19:615–22.

    Article  Google Scholar 

  46. Jayaratne YS, McGrath CP, Zwahlen RA. How accurate are the fusion of cone-beam CT and 3-D stereophotographic images? PLoS One. 2012;7:e49585.

    Article  CAS  Google Scholar 

  47. Park TJ, Lee SH, Lee KS. A method for mandibular dental arch superimposition using 3D conebeam CT and orthodontic 3D digital model. Korean J Orthod. 2012;42:169–81.

    Article  Google Scholar 

  48. Chenin DL, Chenin DA, Chenin ST, Choi J. Dynamic cone-beam computed tomography in orthodontic treatment. J Clin Orthod. 2009;43:507–12.

    PubMed  Google Scholar 

  49. Lin HH, Chiang WC, Lo LJ, Sheng-Pin Hsu S, Wang CH, Wan SY. Artifact-resistant superimposition of digital dental models and cone-beam computed tomography images. J Oral Maxillofac Surg. 2013;71:1933–47.

    Article  Google Scholar 

  50. Cevidanes LH, Tucker S, Styner M, Kim H, Chapuis J, Reyes M, et al. Three-dimensional surgical simulation. Am J Orthod Dentofac Orthop. 2010;138:361–71.

    Article  Google Scholar 

  51. Ludlow JB, Gubler M, Cevidanes L, Mol A. Precision of cephalometric landmark identification: cone-beam computed tomography vs conventional cephalometric views. Am J Orthod Dentofac Orthop. 2009;136:e1–10.

    Article  Google Scholar 

  52. Nguyen E, Boychuk D, Orellana M. Accuracy of cone beam computed tomography in predicting the diameter of unerupted teeth. Am J Orthod Dentofac Orthop. 2011;140:e59–66.

    Article  Google Scholar 

  53. Lagravere MO, Carey J, Toogood RW, Major PW. Three-dimensional accuracy of measurements made with software on cone-beam computed tomography images. Am J Orthod Dentofac Orthop. 2008;134:112–6.

    Article  Google Scholar 

  54. Stratemann SA, Huang JC, Maki K, Miller AJ, Hatcher DC. Comparison of cone beam computed tomography imaging with physical measures. Dentomaxillofac Radiol. 2008;37:80–93.

    Article  CAS  Google Scholar 

  55. Periago DR, Scarfe WC, Moshiri M, Scheetz JP, Silveira AM, Farman AG. Linear accuracy and reliability of cone beam CT derived 3-dimensional images constructed using an orthodontic volumetric rendering program. Angle Orthod. 2008;78:387–95.

    Article  Google Scholar 

  56. Bayome M, Park JH, Kim Y, Kook YA. 3D analysis and clinical applications of CBCT images. Semin Orthod. 2015;21:254–62.

    Article  Google Scholar 

  57. Nur RB, Cakan DG, Arun T. Evaluation of facial hard and soft tissue asymmetry using cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2016;149:225–37.

    Article  Google Scholar 

  58. Akhil G, Senthil Kumar KP, Raja S, Janardhanan K. Three-dimensional assessment of facial asymmetry: a systematic review. Pharm Bioall Sci. 2015;7(Suppl 2):S433–7.

    Article  Google Scholar 

  59. Ras F, Habets LLMH, van Ginkel FC, Prahl-Andersen B. Method for quantifying facial asymmetry in three dimensions using stereophotogrammetry. Angle Orthod. 1995;65:233–9.

    CAS  PubMed  Google Scholar 

  60. Djordjevic J, Toma AM, Zhurov AI, Richmond S. Three-dimensional quantification of facial symmetry in adolescents using laser surface scanning. Eur J Orthod. 2014;36:125–32.

    Article  Google Scholar 

  61. Wood R, Sun Z, Chaudhry J, Tee BC, Kim DG, Leblebicioglu B, et al. Factors affecting the accuracy of buccal alveolar bone height measurements from cone-beam computed tomography images. Am J Orthod Dentofac Orthop. 2013;143:353–63.

    Article  Google Scholar 

  62. Patcas R, Muller L, Ullrich O, Peltomaki T. Accuracy of cone-beam computed tomography at different resolutions assessed on the bony covering of the mandibular anterior teeth. Am J Orthod Dentofac Orthop. 2012;141:41–50.

    Article  Google Scholar 

  63. Da Silveira PF, Fontana MP, Oliveira HW, Vizzotto MB, Montagner F, Silveira HL, et al. CBCT-based volume of simulated root resorption – influence of FOV and voxel size. Int Endontic J. 2015;48:959–65.

    Article  Google Scholar 

  64. Rodrigues AF, Fraga MR, Vitral RWF. Computed tomography evaluation of the temporomandibular joint in class I malocclusion patients: condylar symmetry and condyle-fossa relationship. Am J Orthod Dentofac Orthop. 2009;136:192–8.

    Article  Google Scholar 

  65. Ahmad M, Hollender L, Anderson Q, Kartha K, Ohrbach R, Truelove EL. Research diagnostic criteria for temporomandibular disorders (RDC/TMD): development of image analysis criteria and examiner reliability for image analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:844–60.

    Article  Google Scholar 

  66. Scott B, Kulbersh R, Kaczynski R. An evaluation of condylar position in patients with temporomandibular dysfunction using cone-beam computed tomography. In: Park JH, editor. Computed tomography: new research. New York, NY: Nova Science Publishers, Inc.; 2013. p. 379–92.

    Google Scholar 

  67. Ikeda K, Kawamura A. Assessment of optimal condylar position with limited cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2009;135:495–501.

    Article  Google Scholar 

  68. Park JH, Papademetriou M, Kwon YD. Orthodontic considerations in orthognathic surgery: who does what, when, where and how? Semin Orthod. 2016;22:2–11.

    Article  Google Scholar 

  69. Kim KB. How has our interest in the airway changed over 100 years? Am J Orthod Dentofac Orthop. 2015;148:740–7.

    Article  Google Scholar 

  70. Sparks R, Ngan P, Martin C, Razmus T, Mah J, Gunel E. A comparison of airway dimensions among different skeletal craniofacial patterns. In: Park JH, editor. Computed tomography: new research. New York, NY: Nova Science Publishers, Inc.; 2013. p. 401–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Hyun Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Park, J.H., Pruzansky, D.P. (2019). Imaging and Analysis for the Orthodontic Patient. In: Kadioglu, O., Currier, G. (eds) Craniofacial 3D Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-00722-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00722-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00721-8

  • Online ISBN: 978-3-030-00722-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics