Skip to main content

Monoclonal Antibodies in Solid Organ Transplantation

  • Chapter
  • First Online:
Pharmaceutical Biotechnology

Abstract

In an attempt to target solid organ transplant immunosuppression, monoclonal antibodies directed against key steps in specific immunologic pathways were introduced. The first agent, muromonab-CD3 (OKT3), was initially introduced in the early 1980s for the treatment of allograft rejection. The use of monoclonal antibodies has evolved and expanded over the past two decades and today monoclonal antibodies are routinely included as part of the overall immunosuppression regimen. Both the innate and adaptive immune systems have multiple components and signal transduction pathways aimed at protecting the host from a foreign body, such as transplanted tissue. The ultimate goal of posttransplant immunosuppression is tolerance, a state in which the host immune system recognizes the foreign tissue but does not react to it. This goal has yet to be achieved under modern immunosuppression secondary to immune system redundancy as well as the toxicity of currently available agents. Therefore, monoclonal antibodies are used to provide targeted, immediate immunomodulation aimed at attenuating the overall immune response. Specifically, monoclonal antibodies have been used to (1) decrease the inherent immunoreactivity of the potential transplant recipient prior to engraftment, (2) induce global immunosuppression at the time of transplantation allowing for modified introduction of other immunosuppressive agents (calcineurin inhibitors or corticosteroids), (3) spare exposure to maintenance immunosuppressive agents, and (4) treat acute allograft rejection. Monoclonal antibody selection, as well as dose, is based on patient-specific factors, such as indication for transplantation, type of organ being transplanted, and the long-term immunosuppression objective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexion Pharmaceuticals: Eculizumab (Soliris) Package Insert. Alexion Pharmaceuticals, Cheshire. Last updated: 2011

    Google Scholar 

  • Amlot PL, Rawlings E, Fernando ON, Griffin PJ, Heinrich G, Schreier MH, Castaigne JP, Moore R, Sweny P (1995) Prolonged action of a chimeric interleukin-2 receptor (CD25) monoclonal antibody used in cadaveric renal transplantation. Transplantation 60:748–756

    Article  CAS  PubMed  Google Scholar 

  • Bloom DD, Hu H, Fechner JH, Knechtle SJ (2006) T-lymphocyte alloresponses of Campath-1H treated kidney transplant patients. Transplantation 81:81–87

    Article  PubMed  Google Scholar 

  • Bristol Myers Squibb Company: Belatacept (Nulojix) Package Insert. Bristol Myers Squibb, Princeton. Last updated: June 2011

    Google Scholar 

  • Buysmann S, Bemelman FJ, Schellekens PT, van Kooyk Y, Figdor CG, ten Berge IJ (1996) Activation and increased expression of adhesion molecules on peripheral blood lymphocytes is a mechanism for the immediate lymphocytopenia after administration of OKT3. Blood 87:404–411

    CAS  PubMed  Google Scholar 

  • Calne R, Moffatt SD, Friend PJ, Jamieson NV, Bradley JA, Hale G, Firth J, Bradley J, Smith KG, Waldmann H (1999) Campath IH allows low-dose cyclosporine monotherapy in 31 cadaveric renal allograft recipients. Transplantation 68:1613–1616

    Article  CAS  PubMed  Google Scholar 

  • Chapman TM, Keating GM (2003) Basiliximab: a review of its use as induction therapy in renal transplantation. Drugs 63:2803–2835

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Astle CM, Harrison DE (2002) Hematopoietic stem cell functional failure in interleukin-2-deficient mice. J Hematother Stem Cell Res 11:905–912

    Article  CAS  PubMed  Google Scholar 

  • Church AC (2003) Clinical advances in therapies targeting the interleukin-2 receptor. QJM 96:91–102

    Article  CAS  PubMed  Google Scholar 

  • Coles AJ, Wing M, Smith S, Coraddu F, Greer S, Taylor C, Weetman A, Hale G, Chatterjee VK, Waldmann H, Compston A (1999) Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet 354:1691–1695

    Article  CAS  PubMed  Google Scholar 

  • Colvin M, Smith JM, Hadley N, Skeans MA, Carrico R, Uccellini K, Lehman R, Robinson A, Israni AK, Snyder JJ, Kasiske BL (2017) OPTN/SRTR 2016 annual report: heart. Am J Transplant 18:291–362

    Article  Google Scholar 

  • Cook RC, Connors JM, Gascoyne RD, Fradet G, Levy RD (1999) Treatment of post-transplant lymphoproliferative disease with rituximab monoclonal antibody after lung transplantation. Lancet 354:1698–1699

    Article  CAS  PubMed  Google Scholar 

  • Davis JE, Moss DJ (2004) Treatment options for post-transplant lymphoproliferative disorder and other Epstein-Barr virus-associated malignancies. Tissue Antigens 63:285–292

    Article  CAS  PubMed  Google Scholar 

  • de Andrade LGM, Contti MM, Nga HS, Bravin AM, Takase HM, Viero RM, da Silva TN, Chagas KN, Palma LMP (2017) Long-term outcomes of the Atypical Hemolytic Uremic Syndrome after kidney transplantation treated with eculizumab as first choice. PLoS One 12:e0188155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Durrbach A, Pestana JM, Florman S, Del Carmen Rial M, Rostaing L, Kuypers D, Matas A, Wekerle T, Polinsky M, Meier-Kriesche HU, Munier S, Grinyó JM (2016) Long-term outcomes in belatacept- versus cyclosporine-treated recipients of extended criteriadonor kidneys: final results from BENEFIT-EXT, a phase III randomized study. Am J Transplant 16:3192–3201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enderby C, Keller CA (2015) An overview of immunosuppression in solid organ transplantation. Am J Managed Care 21:s12–s23

    Google Scholar 

  • Ensor CR, Rihtarchik LC, Morrell MR, Hayanga JW, Lichvar AB, Pilewski JM, Wisniewski S, Johnson BA, D’Cunha J, Zeevi A, McDyer JF (2017) Rescue alemtuzumab for refractory acute cellular rejection and bronchiolitis obliterans syndrome after lung transplantation. Clin Transpl 31:e12899

    Article  CAS  Google Scholar 

  • Evens AM, Roy R, Sterrenberg D, Moll MZ, Chadburn A, Gordon LI (2010) Post-transplantation lymphoproliferative disorders: diagnosis, prognosis, and current approaches to therapy. Curr Oncol Rep 12:383–394

    Article  PubMed  Google Scholar 

  • Faye A, Van Den Abeele T, Peuchmaur M, Mathieu-Boue A, Vilmer E (1998) Anti-CD20 monoclonal antibody for post-transplant lymphoproliferative disorders. Lancet 352:1285

    Article  CAS  PubMed  Google Scholar 

  • Ferguson R, Grinyo J, Vincenti F, Kaufman DB, Woodle ES, Marder BA, Citterio F, Marks WH, Agarwal M, Wu D, Dong Y, Garg P (2011) Immunosuppression with belatacept-based, corticosteroid-avoiding regimens in de novo kidney transplant recipients. Am J Transplant 11:66–76

    Article  CAS  PubMed  Google Scholar 

  • Friend PJ, Waldmann H, Hale G, Cobbold S, Rebello P, Thiru S, Jamieson NV, Johnston PS, Calne RY (1991) Reversal of allograft rejection using the monoclonal antibody, Campath-1G. Transplant Proc 23:2253–2254

    CAS  PubMed  Google Scholar 

  • Furuya Y, Jayarajan SN, Taghavi S, Cordova FC, Patel N, Shiose A, Leotta E, Criner GJ, Guy TS, Wheatley GH, Kaiser LR, Toyoda Y (2016) The impact of Alemtuzumab and Basiliximab induction on patient survival and time to bronchiolitis obliterans syndrome in double lung transplantation recipients. Am J Transplant 16:2334–2341

    Article  CAS  PubMed  Google Scholar 

  • Genentech: Rituximab (Rituxan) Package Insert. Genentech, Inc, San Francisco. Last updated: 2011

    Google Scholar 

  • Genzyme Corporation: Alemtuzumab (Campath) Package Insert. Genzyme Corporation, Cambridge. Last updated: 2009

    Google Scholar 

  • Gupta G, Womer KL (2010) Profile of belatacept and its potential role in prevention of graft rejection following renal transplantation. Drug Des Devel Ther 4:375–382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halloran PF (2004) Immunosuppressive drugs for kidney transplantation. N Engl J Med 351:2715–2729

    Article  CAS  PubMed  Google Scholar 

  • Hanaway MJ, Woodle ES, Mulgaonkar S, Peddi VR, Kaufman DB, First MR, Croy R, Holman J (2011) Alemtuzumab induction in renal transplantation. N Engl J Med 364:1909–1919

    Article  CAS  PubMed  Google Scholar 

  • Hart A, Smith JM, Skeans MA, Gustafson SK, Wilk AR, Robinson A, Wainright JL, Haynes CR, Snyder JJ, Kasiske BL, Israni AK (2017) OPTN/SRTR 2016 annual report: kidney. Am J Transplant 18:18–113

    Article  Google Scholar 

  • Jagadeesh D, Woda BA, Draper J, Evens AM (2012) Post transplant lymphoproliferative disorders: risk, classification, and therapeutic recommendations. Curr Treat Options in Oncol 13(1):122–136

    Article  Google Scholar 

  • Junghans RP, Waldmann TA, Landolfi NF, Avdalovic NM, Schneider WP, Queen C (1990) Anti-Tac-H, a humanized antibody to the interleukin 2 receptor with new features for immunotherapy in malignant and immune disorders. Cancer Res 50:1495–1502

    CAS  PubMed  Google Scholar 

  • Kandaswamy R, Stock PG, Gustafson SK, Skeans MA, Curry MA, Prentice MA, Fox A, Israni AK, Snyder JJ, Kasiske BL (2017) OPTN/SRTR 2016 annual report: pancreas. Am J Transplant 18:114–171

    Article  Google Scholar 

  • Kim WR, Lake JR, Smith JM, Schladt DP, Skeans MA, Harper AM, Wainright JL, Snyder JJ, Israni AK, Kasiske BL (2017) OPTN/SRTR 2016 annual report: liver. Am J Transplant 18:172–253

    Article  Google Scholar 

  • Kirk AD, Hale DA, Swanson SJ, Mannon RB (2006) Autoimmune thyroid disease after renal transplantation using depletional induction with alemtuzumab. Am J Transplant 6:1084–1085

    Article  CAS  PubMed  Google Scholar 

  • Kneuchtle SJ, Fernandez LA, Pirsch JD et al (2004) Campath-1H in renal transplantation: the University of Wisconsin experience. Surgery 136:754–760

    Article  Google Scholar 

  • Kordelas L, Trenschel R, Koldehoff M, Elmaagacli A, Beelan DW (2008) Successful treatment of EBV PTLD with CNS lymphomas with the monoclonal anti-CD20 antibody rituximab. Onkologie 31:691–693

    CAS  PubMed  Google Scholar 

  • Kovarik JM, Rawlings E, Sweny P, Fernando O, Moore R, Griffin PJ, Fauchald P, Albrechtsen D, Sodal G, Nordal K, Amlot PL (1996) Pharmacokinetics and immunodynamics of chimeric IL-2 receptor monoclonal antibody SDZ CHI 621 in renal allograft recipients. Transpl Int 9:S32–S33

    Article  CAS  PubMed  Google Scholar 

  • Kovarik J, Wolf P, Cisterne JM, Mourad G, Lebranchu Y, Lang P, Bourbigot B, Cantarovich D, Girault D, Gerbeau C, Schmidt AG, Soulillou JP (1997) Disposition of basiliximab, an interleukin-2 receptor antibody, in recipients of mismatched cadaver renal allografts. Transplantation 64:1701–1705

    Article  CAS  PubMed  Google Scholar 

  • Locke JE, Magro CM, Singer AL, Segev DL, Haas M, Hillel AT, King KE, Kraus E, Lees LM, Melancon JK, Stewart ZA, Warren DS, Zachary AA, Montgomery RA (2009) The use of antibody to complement protein C5 for salvage treatment of severe antibody-mediated rejection. Am J Transplant 9:231–235

    Article  CAS  PubMed  Google Scholar 

  • Magliocca JF, Knechtle SJ (2006) The evolving role of alemtuzumab (Campath-1H) for immunosuppressive therapy in organ transplantation. Transpl Int 19:705–714

    Article  CAS  PubMed  Google Scholar 

  • Magnussen K, Klug B, Moller B (1994) CD3 antigen modulation in T-lymphocytes during OKT3 treatment. Transplant Proc 26:1731

    CAS  PubMed  Google Scholar 

  • Marcos A, Eghtesad B, Fung JJ, Fontes P, Patel K, Devera M, Marsh W, Gayowski T, Demetris AJ, Gray EA, Flynn B, Zeevi A, Murase N, Starzl TE (2004) Use of alemtuzumab and tacrolimus monotherapy for cadaveric liver transplantation: with particular reference to hepatitis C virus. Transplantation 78:966–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin ST, Tichy EM, Gabardi S (2011) Belatacept: a novel biologic for maintenance immunosuppression after renal transplantation. Pharmacotherapy 31:394–407

    Article  CAS  PubMed  Google Scholar 

  • McCurry KR, Iacono A, Zeevi A, Yousem S, Girnita A, Husain S, Zaldonis D, Johnson B, Hattler BG, Starzl TE (2005) Early outcomes in human lung transplantation with Thymoglobulin or Campath-1H for recipient pretreatment followed by posttransplant tacrolimus near-monotherapy. J Thorac Cardiovasc Surg 130:528–537

    Article  PubMed  PubMed Central  Google Scholar 

  • McKeage K (2011) Eculizumab: a review of its use in paroxysmal nocturnal haemoglobinuria. Drugs 71:2327–2345

    Article  CAS  PubMed  Google Scholar 

  • Meier-Kriesche HU, Li S, Gruessner RWG, Fung JJ, Bustami RT, Barr ML, Leichtman AB (2006) Immunosuppression: evolution in practice and trends, 1994–2004. Am J Transplant 6:1111–1131

    Article  CAS  PubMed  Google Scholar 

  • Morris PJ (2004) Transplantation–a medical miracle of the 20th century. N Engl J Med 351:2678–2680

    Article  CAS  PubMed  Google Scholar 

  • Morris PJ, Russell NK (2006) Alemtuzumab (Campath-1H): a systematic review in organ transplantation. Transplantation 81:1361–1367

    Article  PubMed  Google Scholar 

  • Noguchi M, Adelstein S, Cao X, Leonard WJ (1993) Characterization of the human interleukin-2 receptor gamma gene. J Biol Chem 268:13601–13608

    CAS  PubMed  Google Scholar 

  • Nojima M, Yoshimoto T, Nakao A, Itahana R, Kyo M, Hashimoto M, Shima H (2005) Sequential blood level monitoring of basiliximab during multisession plasmapheresis in a kidney transplant recipient. Transplant Proc 37:875–878

    Article  CAS  PubMed  Google Scholar 

  • Novartis Pharmaceuticals: Basiliximab (Simulect) Package Insert. Novartis Pharmaceuticals Corporation, East Hanover. Last updated: 2005

    Google Scholar 

  • Nozu K, Iijima K, Fujisawa M, Nakagawa A, Yoshikawa N, Matsuo M (2005) Rituximab treatment for posttransplant lymphoproliferative disorder (PTLD) induces complete remission of recurrent nephritic syndrome. Pediatr Nephrol 20:1660–1663

    Article  PubMed  Google Scholar 

  • Opelz G, Dohler B (2004) Lymphomas after solid organ transplantation: a collaborative transplant study report. Am J Transplant 4:222–230

    Article  PubMed  Google Scholar 

  • Ortho Biotech: Muromonab (Orthoclone) Package Insert. Ortho Biotech, Raritan. Last updated: 2004

    Google Scholar 

  • Patrick A, Wee A, Hedderman A, Wilson D, Weiss J, Govani M (2011) High-dose intravenous rituximab for multifocal, monomorphic primary central nervous system posttransplant lymphoproliferative disorder. J Neuro-Oncol 103:739–743

    Article  CAS  Google Scholar 

  • Penn I, Hammond W, Brettschneider L, Starzl TE (1969) Malignant lymphomas in transplantation patients. Transplant Proc 1:106–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pescovitz MD (2006) Rituximab, an anti-CD20 monoclonal antibody: history and mechanism of action. Am J Transplant 6:859–866

    Article  CAS  PubMed  Google Scholar 

  • Pescovitz MD, Book BK, Sidner RA (2006) Resolution of recurrent focal segmental glomerulosclerosis proteinuria after rituximab treatment. N Engl J Med 354:1961–1963

    Article  CAS  PubMed  Google Scholar 

  • Pestana JOM, Grinyo JM, Vanrenterghen Y, Becker T, Campistol JM, Florman S, Garcia VD, Kamar N, Lang P, Manfro RC, Massari P, Rial MD, Schnitzler MA, Vitko S, Duan T, Block A, Harler MB, Durrbach A (2012) Three year outcomes from BENEFIT-EXT: a phase III study of belatacept versus cyclosporine in recipients of extended criteria donor kidneys. Am J Transplant 12(3):630–639

    Article  CAS  PubMed  Google Scholar 

  • Press OW, Appelbaum F, Ledbetter JA, Martin PJ, Zarling J, Kidd P, Thomas ED (1987) Monoclonal antibody 1F5 (anti-CD20) serotherapy of human B cell lymphomas. Blood 69:584–591

    CAS  PubMed  Google Scholar 

  • Queen C, Schneider WP, Selick HE, Payne PW, Landolfi NF, Duncan JF, Avdalovic NM, Levitt M, Junghans RP, Waldmann TA (1988) A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci U S A 86:10029–10033

    Article  Google Scholar 

  • Reid ME, Olsson ML (2005) Human blood group antigens and antibodies. In: Hoffman R, Benz EJ (eds) Hematology: basic principles and practice, 4th edn. Churchill Livingstone, Philadelphia, pp 2370–2374

    Google Scholar 

  • Robb RJ, Munck A, Smith KA (1981) T cell growth factor receptors: quantitation, specific and biological relevance. J Exp Med 154:1455–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rostaing L, Massari P, Garcia VD, Mancilla-Urrea E, Nainan G, del Carmen RM, Steinberg S, Vincenti F, Shi R, Di Russo G, Thomas D, Grinyo J (2011) Switching from calcineurin inhibitor based regimens to a belatacept based regimen in renal transplant recipients: a randomized phase II study. Clin J Am Soc Nephrol 6:430–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebba A (2008) Tocilizumab: the first interleukin-6-receptor inhibitor. Am J Health Syst Pharm 65:1413–1418

    Article  CAS  PubMed  Google Scholar 

  • Serrano OK, Friedmann P, Ahsanuddin S, Millan C, Ben-Yaacov A, Kayler LK (2015) Outcomes associated with steroid avoidance and Alemtuzumab among kidney transplant recipients. Clin J Am Soc Nephrol 10:2030–2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibuya H, Yoneyama M, Nakamura Y, Harada H, Hatakeyama M, Minamoto S, Kno T, Doi T, White R, Taniguchi T (1990) The human interleukin-2 receptor beta-chain gene: genomic organization, promoter analysis and chromosomal assignment. Nucleic Acids Res 18:3697–3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shyu S, Dew MA, Pilewski JM, Dabbs AJD, Zaldonis DB, Studer SM, Crespo MM, Toyoda Y, Bermudez CA, McCurry KR (2011) Five-year outcomes with alemtuzumab induction after lung transplantation. J Heart Lung Transplant 30:743–754

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith JM, Weaver T, Skeans MA, Horslen SP, Harper AM, Snyder JJ, Israni AK, Kasiske BL (2017) OPTN/SRTR 2016 annual report: intesting. Am J Transplant 18:254–290

    Article  Google Scholar 

  • Stegall MD, Gloor JM (2010) Deciphering antibody-mediated rejection: new insights into mechanisms and treatment. Curr Opin Organ Transplant 15:8–10

    Article  PubMed  Google Scholar 

  • Stegall MD, Diwan T, Raghavaiah S, Cornell LD, Burns J, Dean PG, Cosio FG, Gandhi MJ, Kremers W, Gloor JM (2011) Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am J Transplant 11:245–2413

    Article  Google Scholar 

  • Strologo LD, Guzzo I, Laurenzi C, Vivarelli M, Parodi A, Barbano G, Camilla R, Scozzola F, Amore A, Ginevri F, Murer L (2009) Use of rituximab in focal glomerulosclerosis relapses after renal transplantation. Transplantation 88:417–420

    Article  CAS  Google Scholar 

  • Swinnen LJ, Costanzo-Nordin MR, Fisher SG, O’Sullivan EJ, Johnson MR, Heroux AL, Dizikes GJ, Pifarre R, Fisher RI (1990) Increased incidence of lymphoproliferative disorder after immunosuppression with the monoclonal antibody OKT3 in cardiac-transplant recipients. N Engl J Med 323:1723–1728

    Article  CAS  PubMed  Google Scholar 

  • Teuteberg JJ, Shullo MA, Zomak R, Toyoda Y, McNamara DM, Bermudex C, Kormos RL, McCurry KR (2010) Alemtuzumab induction prior to cardiac transplantation with lower intensity maintenance immunosuppression: one-year outcomes. Am J Transplant 10:382–388

    Article  CAS  PubMed  Google Scholar 

  • Tobinai K (2003) Rituximab and other emerging antibodies as molecular target-based therapy of lymphoma. Int J Clin Oncol 8:212–223

    Article  CAS  PubMed  Google Scholar 

  • Tsurushita N, Hinton PR, Kumar S (2005) Design of humanized antibodies: from anti-Tac to Zenapax. Methods 36:69–83

    Article  CAS  PubMed  Google Scholar 

  • Tzakis AG, Tryphonopoulos P, Kato T, Nishida S, Levi DM, Madariaga JR, Gaynor JJ, De Faria W, Regev A, Esquenazi V, Weppler D, Ruiz P, Miller J (2004) Preliminary experience with alemtuzumab (Campath-1H) and low-dose tacrolimus immunosuppression in adult liver transplantation. Transplantation 77:1209–1214

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama T, Border S, Waldmann TA (1981) A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T cells. J Immunol 126:1393–1397

    CAS  PubMed  Google Scholar 

  • Valapour M, Lehr CJ, Skeans MA, Smith JM, Carrico R, Uccellini K, Lehman R, Robinson A, Israni AK, Snyder JJ, Kasiske BL (2017) OPTN/SRTR 2016 annual report: lung. Am J Transplant 18:363–433

    Article  Google Scholar 

  • Van den Hoogen MWF, Hilbrands LB (2011) Use of monoclonal antibodies in renal transplantation. Immunotherapy 3:871–880

    Article  PubMed  CAS  Google Scholar 

  • Vincenti F, Lantz M, Birnbaum J, Garovoy M, Mould D, Hakimi J, Nieforth K, Light S (1997) A phase I trial of humanized anti-interleukin 2 receptor antibody in renal transplantation. Transplantation 63:33–38

    Article  CAS  PubMed  Google Scholar 

  • Vincenti F, Kirkman R, Light S, Bumgardner G, Pescovitz M, Halloran P, Neylan J, Wilkinson A, Ekberg H, Gaston R, Backman L, Burdick J (1998) Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N Engl J Med 338:161–165

    Article  CAS  PubMed  Google Scholar 

  • Vincenti F, Larsen CP, Alberu J, Bresnahan B, Garcia VD, Kothari J, Lang P, Urrea EM, Massari P, Mondragon-Ramirez G, Reyes-Acevedo R, Rice K, Rostaing L, Steinberg S, Xing J, Agarwal M, Harler MB, Charpentier B (2012) Three-year outcomes from BENEFIT, a randomized, active-controlled, parallel-group study in adult kidney transplant recipients. Am J Transplant 12:210–217

    Article  CAS  PubMed  Google Scholar 

  • Vincenti F, Rostaing L, Grinyo J, Rice K, Steinberg S, Gaite L, Moal MC, Mondragon-Ramirez GA, Kothari J, Polinsky MS, Meier-Kriesche HU, Munier S, Larsen CP (2016) Belatacept and long-term outcomes in kidney transplantation. N Engl J Med 374:333–343

    Article  CAS  PubMed  Google Scholar 

  • Vo AA, Choi J, Cisneros K, Reinsmoen N, Haas M, Ge S, Toyoda M, Kahwaji J, Peng A, Villicana R, Jordan SC (2014) Benefits of rituximab combined with intravenous immunoglobulin for desensitization in kidney transplant recipients. Transplantation 98:312–319

    Article  CAS  PubMed  Google Scholar 

  • Vo AA, Choi J, Kim I, Louie S, Cisneros K, Kahwaji J, Toyoda M, Ge S, Haas M, Puliyanda D, Reinsmoen N, Peng A, Villicana R, Jordan SC (2015) A phase I/II trial of the interleukin-6 receptor-specific humanized monoclonal (tocilizumab) + intravenous immunoglobulin in difficult to desensitize patients. Transplantation 99:2356–2363

    Article  CAS  PubMed  Google Scholar 

  • Watson CJ, Bradley JA, Friend PJ, Firth J, Taylor CJ, Bradley JR, Smith KG, Thiru S, Jamieson NV, Hale G, Waldmann H, Calne R (2005) Alemtuzumab (CAMPATH 1H) induction therapy in cadaveric kidney transplantation—efficacy and safety at five years. Am J Transplant 5:1347–1533

    Article  CAS  PubMed  Google Scholar 

  • Wekerle T, Grinyo JM (2012) Belatacept: from rational design to clinical application. Transpl Int 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Wilde MI, Goa KL (1996) Muromonab CD3: a reappraisal of its pharmacology and use of prophylaxis of solid organ transplant rejection. Drugs 51:865–894

    Article  CAS  PubMed  Google Scholar 

  • Wong JT, Eylath AA, Ghobrial I, Colvin RB (1990) The mechanism of anti-CD3 monoclonal antibodies. Mediation of cytolysis by inter-T cell bridging. Transplantation 50:683–689

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole A. Pilch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pilch, N.A., Meadows, H.B., Alloway, R.R. (2019). Monoclonal Antibodies in Solid Organ Transplantation. In: Crommelin, D., Sindelar, R., Meibohm, B. (eds) Pharmaceutical Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-00710-2_25

Download citation

Publish with us

Policies and ethics