Skip to main content

Membrane Domains Under Cellular Recycling

  • Chapter
  • First Online:
Physics of Biological Membranes
  • 1771 Accesses

Abstract

Living cells are bounded by sac-like membranes that play a crucial role in almost every cellular process. These membranes are highly dynamic, two-dimensional systems, with components that are continuously exchanged with rest of the living cell by the secretion and absorption of small vesicles with sizes of the order of tens or hundreds of nanometers in diameter. This constant recycling of the cell membranes leads to a complete turnover of its constituents on the order of tens of minutes. The presence of distinct nano-scale microphase separated domains in biomembranes has been confirmed by numerous experiments. In this chapter we address recent advances in our understanding of the role of recycling in the control of membrane microdomain formation. These results relate to both the steady-state distribution of domain sizes and the transient response of this distribution following perturbation of cellular synthesis, transport, or recycling pathways. This gives a route to testing and calibrating theoretical models from experiments that measure the domain size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts B et al (2008) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  2. Heimburg T (2007) Thermal biophysics of membranes. Wiley-VCH, Berlin,

    Book  Google Scholar 

  3. Lenne P-F et al (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25:3245–3256

    Article  CAS  Google Scholar 

  4. Hao M (2000) Characterization of rapid membrane internalization and recycling. J Biol Chem 275:15279–15286

    Article  CAS  Google Scholar 

  5. Hancock JF (2006) Lipid rafts: contentious only from simplistic standpoints. Natl. Rev. Mol. Cell Biol. 7:456–62

    Article  CAS  Google Scholar 

  6. Daumas F et al (2003) Confined diffusion without fences of a g-protein-coupled receptor as revealed by single particle tracking. Biophys J 84:356–66

    Article  CAS  Google Scholar 

  7. Destainville N, Dumas F, Salomé L (2008) What do diffusion measurements tell us about membrane compartmentalisation? Emergence of the role of interprotein interactions. J Chem Biol 1:37–48

    Article  Google Scholar 

  8. Ying W, Huerta G, Steinberg S, Zúñiga M (2009) Time series analysis of particle tracking data for molecular motion on the cell membrane. Bull Math Biol 71:1967–2024

    Article  CAS  Google Scholar 

  9. Robson A, Burrage K, Leake MC (2012) Inferring diffusion in single live cells at the single-molecule level. Phil Trans R Soc B 368:20120029

    Article  Google Scholar 

  10. Brown DA (2006) Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology 21:430–439

    Article  CAS  Google Scholar 

  11. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  Google Scholar 

  12. Komura S, Andelman D (2014) Physical aspects of heterogeneities in multi-component lipid membranes. Adv Colloid Interface Sci 208:34–46

    Article  CAS  Google Scholar 

  13. Pike LJ (2009) The challenge of lipid rafts. J Lipid Res 50:S323–S328

    Article  Google Scholar 

  14. Mouritsen OG, Bagatolli LA (2016) Life – as a matter of fat: lipids in a membrane biophysics, 2nd edn. Springer, London

    Book  Google Scholar 

  15. Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3:a004697

    Article  Google Scholar 

  16. Leslie M (2011) Do lipid rafts exist? Science 334:1046–1047

    Article  CAS  Google Scholar 

  17. Gennis RB (1989) Biomembranes: molecular structure and function. Springer, New York

    Book  Google Scholar 

  18. Lipowsky R, Dimova R (2003) Domains in membranes and vesicles. J Phys Condens Matter 15:S31–S45

    Article  CAS  Google Scholar 

  19. Ipsen JH, Karlström G, Mouritsen OG, Wennerström H, Zuckermann MJ (1987) Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta 905:162–172

    Article  CAS  Google Scholar 

  20. Veatch SL, Keller SL (2005) Seeing spots: complex phase behavior in simple membranes. Biochim Biophys Acta 1746:172–185

    Article  CAS  Google Scholar 

  21. Goñi FM et al. (2008) Phase diagrams of lipid mixtures relevant to the study of membrane rafts. Biochim Biophys Acta 1781:665–684

    Article  Google Scholar 

  22. Veatch SL, Keller SL (2005) Miscibility phase diagrams of giant vesicles containing sphingomyelin. Phys Rev Lett 94:148101

    Article  Google Scholar 

  23. Pike LJ (2006) Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 47:1597–1598

    Article  CAS  Google Scholar 

  24. Mouritsen OG, Bagatolli LA (2015) Lipid domains in model membranes: a brief historical perspective. Essays Biochem 57:1–19

    Article  Google Scholar 

  25. Arumugam S, Bassereau P (2015) Membrane nanodomains: contribution of curvature and interaction with proteins and cytoskeleton. Essays Biochem 57:109–119

    Article  Google Scholar 

  26. Bagatolli LA, Sunil Kumar PB (2009) Phase behavior of multicomponent membranes: Experimental and computational techniques. Soft Matter 5:3234

    Article  CAS  Google Scholar 

  27. Komura S, Shirotori H, Olmsted PD, Andelman D (2004) Lateral phase separation in mixtures of lipids and cholesterol. Eur Lett 67:321–327

    Article  CAS  Google Scholar 

  28. Bray A (1994) Theory of phase-ordering kinetics. Adv Phys 43:357–459

    Article  Google Scholar 

  29. Lajoie P, Goetz JG, Dennis JW, Nabi IR (2009) Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. The Journal of Cell Biology 185:381–385. http://jcb.rupress.org/content/185/3/381.full.pdf

    Article  CAS  Google Scholar 

  30. Yethiraj A, Weisshaar JC (2007) Why are lipid rafts not observed in vivo? Biophys J 93:3113–3119

    Article  CAS  Google Scholar 

  31. Stottrup BL, Veatch SL, Keller SL (2004) Nonequilibrium behavior in supported lipid membranes containing cholesterol. Biophys J 86:2942–2950

    Article  CAS  Google Scholar 

  32. Lipowsky R, Rouhiparkouhi T, Discher DE, Weikl TR (2013) Domain formation in cholesterolphospholipid membranes exposed to adhesive surfaces or environments. Soft Matter 9:8438

    Article  CAS  Google Scholar 

  33. Stone HA, Armand A (1998) Hydrodynamics of particles embedded in a flat surfactant layer overlying a subphase of finite depth. J Fluid Mech 369:151–173

    CAS  Google Scholar 

  34. Liu J, Qi S, Groves JT, Chakraborty AK (2005) Phase segregation on different length scales in a model cell membrane system. J Phys Chem B 109:19960–19969

    Article  CAS  Google Scholar 

  35. Wallace EJ, Hooper NM, Olmsted PD (2006) Effect of hydrophobic mismatch on phase behavior of lipid membranes. Biophys J 90:4104–4118

    Article  CAS  Google Scholar 

  36. García-Sáez AJ, Chiantia S, Schwille P (2007) Effect of line tension on the lateral organization of lipid membranes. J Biol Chem 282:33537–33544

    Article  Google Scholar 

  37. Lin Q, London E (2013) Altering hydrophobic sequence lengths shows that hydrophobic mismatch controls affinity for ordered lipid domains (rafts) in the multitransmembrane strand protein perfringolysin O. J Biol Chem 288:1340–1352

    Article  CAS  Google Scholar 

  38. Baumgart T, Hess ST, Webb WW (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425:821–824

    Article  CAS  Google Scholar 

  39. Baumgart T, Das S, Webb WW, Jenkins JT (2005) Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys J 89:1067–1080

    Article  CAS  Google Scholar 

  40. Ogunyankin MO, Longo ML (2013) Metastability in pixelation patterns of coexisting fluid lipid bilayer phases imposed by e-beam patterned substrates. Soft Matter 9:2037–2046

    Article  CAS  Google Scholar 

  41. Honerkamp-Smith AR, Veatch SL, Keller SL (2009) An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes. Biochim Biophys Acta 1788:53–63

    Article  CAS  Google Scholar 

  42. Giang H, Shlomovitz R, Schick M (2015) Microemulsions, modulated phases and macroscopic phase separation: a unified picture of rafts. Essays Biochem 57:21–32

    Article  Google Scholar 

  43. Turner MS, Sens P, Socci ND (2005) Nonequilibrium raftlike membrane domains under continuous recycling. Phys Rev Lett 95:168301

    Article  Google Scholar 

  44. Honerkamp-Smith AR, et al (2008) Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points. Biophys J 95:236–246

    Article  CAS  Google Scholar 

  45. Kardar M (2007) Statistical physics of particles. Cambridge University Press, Cambridge

    Book  Google Scholar 

  46. Veatch SL, Soubias O, Keller SL, Gawrisch K (2007) Critical fluctuations in domain-forming lipid mixtures. Proc Natl Acad Sci USA 104:17650–17655

    Article  CAS  Google Scholar 

  47. Veatch SL, et al (2008) Critical fluctuations in plasma membrane vesicles. ACS Chem Biol 3:287–293

    Article  CAS  Google Scholar 

  48. Machta BB, Papanikolaou S, Sethna JP, Veatch SL (2011) Minimal model of plasma membrane heterogeneity requires coupling cortical actin to criticality. Biophys J 100:1668–1677

    Article  CAS  Google Scholar 

  49. Palmieri B, Yamamoto T, Brewster RC, Safran SA (2014) Line active molecules promote inhomogeneous structures in membranes: theory, simulations and experiments. Adv Colloid Interface Sci 208:58–65

    Article  CAS  Google Scholar 

  50. Nicolini C, et al (2006) Visualizing association of N-Ras in lipid microdomains: influence of domain structure and interfacial adsorption. J Am Chem Soc 128:192–201

    Article  CAS  Google Scholar 

  51. Yamamoto T, Brewster R, Safran SA (2010) Chain ordering of hybrid lipids can stabilize domains in saturated/hybrid/cholesterol lipid membranes. Eur Lett 91:28002

    Article  Google Scholar 

  52. Brewster R, Safran SA (2010) Line active hybrid lipids determine domain size in phase separation of saturated and unsaturated lipids. Biophys J 98:L21–L23

    Article  CAS  Google Scholar 

  53. Palmieri B, Safran SA (2013) Hybrid lipids increase the probability of fluctuating nanodomains in mixed membranes. Langmuir 29:5246–5261

    Article  CAS  Google Scholar 

  54. Palmieri B, Safran SA (2013) Hybrid lipids increase nanoscale fluctuation lifetimes in mixed membranes. Phys Rev E 88:032708

    Article  Google Scholar 

  55. Hirose Y, Komura S, Andelman D (2009) Coupled modulated bilayers: a phenomenological model. ChemPhysChem 10:2839–2846

    Article  CAS  Google Scholar 

  56. Hirose Y, Komura S, Andelman D (2012) Concentration fluctuations and phase transitions in coupled modulated bilayers. Phys Rev E 86:021916

    Article  Google Scholar 

  57. Veatch SL, Gawrisch K, Keller SL (2006) Closed-loop miscibility gap and quantitative tie-lines in ternary membranes containing diphytanoyl PC. Biophys J 90:4428–4436

    Article  CAS  Google Scholar 

  58. Schick M (2012) Membrane heterogeneity: Manifestation of a curvature-induced microemulsion. Phys Rev E 85:1–4

    Article  Google Scholar 

  59. Andelman D, Rosensweig RE (2009) Modulated phases: review and recent results. J Phys Chem B 113:3785–3798

    Article  CAS  Google Scholar 

  60. Leibler S, Andelman D (1987) Ordered and curved meso-structures in membranes and amphiphilic films. J Phys Fr 48:2013–2018

    Article  CAS  Google Scholar 

  61. Rautu SA, Rowlands G, Turner MS (2015) Membrane Composition Variation and Underdamped Mechanics near Transmembrane Proteins and Coats. Phys Rev Lett 114:098101

    Article  Google Scholar 

  62. Shlomovitz R, Schick M (2013) Model of a raft in both leaves of an asymmetric lipid bilayer. Biophys J 105:1406–1413

    Article  CAS  Google Scholar 

  63. Mayor S, Rao M (2004) Rafts: scale-dependent, active lipid organization at the cell surface. Traffic 5:231–240

    Article  CAS  Google Scholar 

  64. Gowrishankar K, et al (2012) Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules. Cell 149:1353–1367

    Article  CAS  Google Scholar 

  65. Tang Q, Edidin M (2001) Vesicle trafficking and cell surface membrane patchiness. Biophys J 81:196–203

    Article  CAS  Google Scholar 

  66. Foret L (2005) A simple mechanism of raft formation in two-component fluid membranes. Eur Lett 71:508–514

    Article  CAS  Google Scholar 

  67. Glotzer SC, Di Marzio EA, Muthukumar M (1995) Reaction-controlled morphology of phase-separating mixtures. Phys Rev Lett 74:2034–2037

    Article  CAS  Google Scholar 

  68. Foret L (2012) Aggregation on a membrane of particles undergoing active exchange with a reservoir. Eur Phys J E 35:12

    Article  CAS  Google Scholar 

  69. Gómez J, Sagués F, Reigada R (2008) Actively maintained lipid nanodomains in biomembranes. Phys Rev E 77:021907

    Article  Google Scholar 

  70. Gómez J, Sagués F, Reigada R (2009) Nonequilibrium patterns in phase-separating ternary membranes. Phys Rev E 80:011920

    Article  Google Scholar 

  71. Fan J, Sammalkorpi M, Haataja M (2010) Influence of nonequilibrium lipid transport, membrane compartmentalization, and membrane proteins on the lateral organization of the plasma membrane. Phys Rev E 81:011908

    Article  Google Scholar 

  72. Vagne Q, Turner MS, Sens P (2015) Sensing Size through Clustering in Non-Equilibrium Membranes and the Control of Membrane-Bound Enzymatic Reactions. PLoS One 10:e0143470

    Article  Google Scholar 

  73. Camacho J (2001) Scaling in steady-state aggregation with injection. Phys Rev E 63:046112

    Article  CAS  Google Scholar 

  74. Connaughton C, Krapivsky PL (2010) Aggregation-fragmentation processes and decaying three-wave turbulence. Phys Rev E 81:035303(R)

    Google Scholar 

  75. Leyvraz F (2003) Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Phys Rep 383:95–212

    Article  CAS  Google Scholar 

  76. Rautu SA, Rowlands G, Turner MS (2018) Size-dependent recycling of membrane clusters. Europhys Lett 21:58004

    Article  Google Scholar 

  77. Saffman PG, Delbruck M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci USA 72:3111–3113

    Article  CAS  Google Scholar 

  78. Olver FWJ, Lozier DW, Boisvert RF, Clark CW (eds) (2010) NIST handbook of mathematical functions. Cambridge University Press, New York

    Google Scholar 

  79. Abramowitz M, Stegun I (1965) Handbook of mathematical functions. Dover Publications Inc., New York

    Google Scholar 

  80. Truong Quang B-A, Mani M, Markova O, Lecuit T, Lenne P-F (2013) Principles of E-cadherin supramolecular organization in vivo. Curr Biol 23:2197–2207

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge longstanding collaboration with Dr. P. Sens (Paris), and funding from UK EPSRC under Grant No. EP/I005439/1 (M.S.T.) and Simons Foundation (S.A.R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew S. Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rautu, S.A., Turner, M.S. (2018). Membrane Domains Under Cellular Recycling. In: Bassereau, P., Sens, P. (eds) Physics of Biological Membranes. Springer, Cham. https://doi.org/10.1007/978-3-030-00630-3_9

Download citation

Publish with us

Policies and ethics