Skip to main content

Lipid Rafts: A Personal Account

  • Chapter
  • First Online:
Book cover Physics of Biological Membranes

Abstract

The lipid raft concept of membrane sub-compartmentalization was introduced in 1997 and originated from studies on epithelial cell surface polarity. It was the first time that membrane lipid specificity was incorporated into the mechanisms that generate cell architecture. From its epithelial origins, the raft concept was generalized to explain how cells manage to perform their full spectrum of membrane functions. The associative capability of saturated sphingolipids and phospholipids with cholesterol and their repulsion of polyunsaturated membrane lipids formed the basis of the raft concept. With the demonstration that isolated plasma membrane vesicles can separate into two phases by liquid–liquid demixing, this became the physicochemical principle underlying raft sub-compartmentalization. The compartmentalization achieved by clustering fluctuating raft assemblies in living cells could be called an abortive nonequilibrium phase separation. Moreover, recent data demonstrate that raft lipids and proteins form collective cooperatives with emerging properties that enrich their functional repertoire. Together these features provide a new perspective on cell membrane function.

The lipid raft concept has a lengthy history. I am still amazed myself how durable this idea has been, considering its humble beginnings. In this chapter I will summarize my personal perspective on the evolution of this principle of membrane organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simons K, Garoff H, Helenius A (1982) How an animal virus gets into and out of its host cell. Sci Am 246(2):58–66

    Article  CAS  Google Scholar 

  2. Cereijido M, Robbins ES, Dolan WJ, Rotunno CA, Sabatini DD (1978) Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol 77(3):853–880

    Article  CAS  Google Scholar 

  3. Rodriguez Boulan E, Sabatini DD (1978) Asymmetric budding of viruses in epithelial monlayers: a model system for study of epithelial polarity. Proc Natl Acad Sci USA 75(10):5071–5075

    Article  CAS  Google Scholar 

  4. Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27(17):6197–6202

    Article  CAS  Google Scholar 

  5. Fries E, Rothman JE (1980) Transport of vesicular stomatitis virus glycoprotein in a cell-free extract. Proc Natl Acad Sci USA 77(7):3870–3874

    Article  CAS  Google Scholar 

  6. Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21(1):205–215

    Article  CAS  Google Scholar 

  7. Griffiths G, Simons K (1986) The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234(4775):438–443

    Article  CAS  Google Scholar 

  8. Matlin KS, Simons K (1984) Sorting of an apical plasma membrane glycoprotein occurs before it reaches the cell surface in cultured epithelial cells. J Cell Biol 99(6):2131–2139

    Article  CAS  Google Scholar 

  9. Pfeiffer S, Fuller SD, Simons K (1985) Intracellular sorting and basolateral appearance of the G protein of vesicular stomatitis virus in Madin-Darby canine kidney cells. J Cell Biol 101(2):470–476

    Article  CAS  Google Scholar 

  10. van Meer G, Stelzer EH, Wijnaendts-van-Resandt RW, Simons K (1987) Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells. J Cell Biol 105(4):1623–1635

    Article  Google Scholar 

  11. Thompson TE, Tillack TW (1985) Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu Rev Biophys Biophys Chem 14:361–386

    Article  CAS  Google Scholar 

  12. Skibbens JE, Roth MG, Matlin KS (1989) Differential extractability of influenza virus hemagglutinin during intracellular transport in polarized epithelial cells and nonpolar fibroblasts. J Cell Biol 108(3):821–832

    Article  CAS  Google Scholar 

  13. Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68(3):533–544

    Article  CAS  Google Scholar 

  14. Harder T, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141(4):929–942

    Article  CAS  Google Scholar 

  15. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572

    Article  CAS  Google Scholar 

  16. de Almeida RF, Fedorov A, Prieto M (2003) Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys J 85(4):2406–2416

    Article  Google Scholar 

  17. Ipsen JH, Karlstrom G, Mouritsen OG, Wennerstrom H, Zuckermann MJ (1987) Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta 905(1):162–172

    Article  CAS  Google Scholar 

  18. Silvius JR (1992) Cholesterol modulation of lipid intermixing in phospholipid and glycosphingolipid mixtures. Evaluation using fluorescent lipid probes and brominated lipid quenchers. Biochemistry 31(13):3398–3408

    Article  CAS  Google Scholar 

  19. Wang C, Yu Y, Regen SL (2017) Lipid raft formation: key role of polyunsaturated phospholipids. Angew Chem Int Ed Engl 56(6):1639–1642

    Article  CAS  Google Scholar 

  20. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1):31–39

    Article  CAS  Google Scholar 

  21. Kurzchalia TV, Hartmann E, Dupree P (1995) Guilty by insolubility—does a protein’s detergent insolubility reflect a caveolar location. Trends Cell Biol 5(5):187–189

    Article  CAS  Google Scholar 

  22. Munro S (2003) Lipid rafts: elusive or illusive? Cell 115(4):377–388

    Article  CAS  Google Scholar 

  23. Levental I, Veatch SL (2016) The continuing mystery of lipid rafts. J Mol Biol 428(24 Pt A):4749–4764

    Article  CAS  Google Scholar 

  24. Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394(6695):798–801

    Article  CAS  Google Scholar 

  25. Raghupathy R, Anilkumar AA, Polley A, Singh PP, Yadav M, Johnson C, Suryawanshi S, Saikam V, Sawant SD, Panda A, Guo Z, Vishwakarma RA, Rao M, Mayor S (2015) Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell 161(3):581–594

    Article  CAS  Google Scholar 

  26. Kusumi A, Koyama-Honda I, Suzuki K (2004) Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5(4):213–230

    Article  CAS  Google Scholar 

  27. Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157(6):1071–1081

    Article  CAS  Google Scholar 

  28. Pralle A, Keller P, Florin EL, Simons K, Horber JK (2000) Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 148(5):997–1008

    Article  CAS  Google Scholar 

  29. Lenne P, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A, Guo X, Rigneault H, He H, Marguet D (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25(14):3245–3256

    Article  CAS  Google Scholar 

  30. Klotzsch E, Schutz GJ (2013) A critical survey of methods to detect plasma membrane rafts. Philos Trans R Soc Lond Ser B Biol Sci 368(1611):20120033

    Article  Google Scholar 

  31. Baumgart T, Hammond AT, Sengupta P, Hess ST, Holowka DA, Baird BA, Webb WW (2007) Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc Natl Acad Sci USA 104(9):3165–3170

    Article  CAS  Google Scholar 

  32. Lingwood D, Ries J, Schwille P, Simons K (2008) Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc Natl Acad Sci USA 105(29):10005–10010

    Article  CAS  Google Scholar 

  33. Veatch SL, Cicuta P, Sengupta P, Honerkamp-Smith A, Holowka D, Baird B (2008) Critical fluctuations in plasma membrane vesicles. ACS Chem Biol 3(5):287–293

    Article  CAS  Google Scholar 

  34. Kaiser HJ, Lingwood D, Levental I, Sampaio JL, Kalvodova L, Rajendran L, Simons K (2009) Order of lipid phases in model and plasma membranes. Proc Natl Acad Sci USA 106(39):16645–16650

    Article  CAS  Google Scholar 

  35. Kusumi A, Suzuki KG, Kasai RS, Ritchie K, Fujiwara TK (2011) Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem Sci 36(11):604–615

    Article  CAS  Google Scholar 

  36. Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11(10):688–699

    Article  CAS  Google Scholar 

  37. Pinaud F, Michalet X, Iyer G, Margeat E, Moore HP, Weiss S (2009) Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic 10(6):691–712

    Article  CAS  Google Scholar 

  38. van Zanten TS, Gomez J, Manzo C, Cambi A, Buceta J, Reigada R, Garcia-Parajo MF (2010) Direct mapping of nanoscale compositional connectivity on intact cell membranes. Proc Natl Acad Sci USA 107(35):15437–15442

    Article  Google Scholar 

  39. Lillemeier BF, Pfeiffer JR, Surviladze Z, Wilson BS, Davis MM (2006) Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci USA 103(50):18992–18997

    Article  CAS  Google Scholar 

  40. Ayuyan AG, Cohen FS (2006) Lipid peroxides promote large rafts: effects of excitation of probes in fluorescence microscopy and electrochemical reactions during vesicle formation. Biophys J 91(6):2172–2183

    Article  CAS  Google Scholar 

  41. Sevcsik E, Brameshuber M, Folser M, Weghuber J, Honigmann A, Schutz GJ (2015) GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane. Nat Commun 6:6969

    Article  CAS  Google Scholar 

  42. Huang H, Simsek MF, Jin W, Pralle A (2015) Effect of receptor dimerization on membrane lipid raft structure continuously quantified on single cells by camera based fluorescence correlation spectroscopy. PLoS One 10(3):e0121777

    Article  Google Scholar 

  43. Levental I, Lingwood D, Grzybek M, Coskun U, Simons K (2010) Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc Natl Acad Sci USA 107(51):22050–22054

    Article  CAS  Google Scholar 

  44. Ewers H, Romer W, Smith A, Bacia K, Dmitrieff S, Chai W, Mancini R, Kartenbeck J, Chambon V, Berland L, Oppenheim A, Schwarzmann G, Feizi T, Schwille P, Sens P, Helenius A, Johannes L (2010) GM1 structure determines SV40-induced membrane invagination and infection. Nat Cell Biol 12(1):11–18

    Article  CAS  Google Scholar 

  45. Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35(3):125–129

    Article  Google Scholar 

  46. Stone MB, Shelby SA, Nunez MF, Wisser K, Veatch SL (2017) Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes. eLife 6:e19891

    Article  Google Scholar 

  47. Klemm RW, Ejsing CS, Surma MA, Kaiser HJ, Gerl MJ, Sampaio JL, de Robillard Q, Ferguson C, Proszynski TJ, Shevchenko A, Simons K (2009) Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J Cell Biol 185(4):601–612

    Article  CAS  Google Scholar 

  48. Proszynski TJ, Klemm RW, Gravert M, Hsu PP, Gloor Y, Wagner J, Kozak K, Grabner H, Walzer K, Bagnat M, Simons K, Walch-Solimena C (2005) A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast. Proc Natl Acad Sci USA 102(50):17981–17986

    Article  CAS  Google Scholar 

  49. Saenz JP, Grosser D, Bradley AS, Lagny TJ, Lavrynenko O, Broda M, Simons K (2015) Hopanoids as functional analogues of cholesterol in bacterial membranes. Proc Natl Acad Sci USA 112(38):11971–11976

    Article  CAS  Google Scholar 

  50. Kurzchalia TV, Ward S (2003) Why do worms need cholesterol? Nat Cell Biol 5(8):684–688

    Article  CAS  Google Scholar 

  51. Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Julicher F, Hyman AA (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324(5935):1729–1732

    Article  CAS  Google Scholar 

  52. Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483(7389):336–340

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Mathias Gerl for help with references and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Simons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simons, K. (2018). Lipid Rafts: A Personal Account. In: Bassereau, P., Sens, P. (eds) Physics of Biological Membranes. Springer, Cham. https://doi.org/10.1007/978-3-030-00630-3_4

Download citation

Publish with us

Policies and ethics