Skip to main content

Protein-Induced Morphological Deformations of Biomembranes

  • Chapter
  • First Online:
Book cover Physics of Biological Membranes

Abstract

Many of the functions in living cells, such as endocytosis, cytokinesis, cell motility, and apoptosis, are mediated by the ability of the plasma membrane or organelles’ membranes to deform. While it is well established experimentally that the highly curved deformations of lipid membranes in cells are the result of their interactions with proteins, the understanding of the mechanisms leading to these structures is still in its infancy. Conventional modeling of membranes using sheet elasticity cannot explain the stability and dynamics of many of the complex membrane structures in the cell. In this chapter, we present two studies based on two different numerical approaches, which show how complex structures in cell membranes can emerge from the interplay between membrane elasticity and protein–membrane interactions. The first study is focused on the effect of energy-consuming protein binding/unbinding onto membrane morphology, and the second study is focused on the effect of cytoskeletal proteins on regulating membrane shapes.

Book Chapter in Physics of Biological Membranes, Eds. P. Sens and P. Bassereau.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shibata Y, Hu J, Kozlov MM, Rapoport TA (2009) Mechanisms shaping the membranes of cellular organelles. Annu Rev Cell Dev Biol 25:329–354

    Article  CAS  Google Scholar 

  2. Marshall WF (2011) Origins of cellular biology. BMC Biol 9:57

    Article  Google Scholar 

  3. Martínez-Menárguez JA (2013) Intra-Golgi transport: roles for vesicles, tubules and cisternae. ISRN Cell Biol 2013:1–15

    Article  Google Scholar 

  4. Alberts B, Johnson A, Lewis J, Raff M (2007) Molecular biology of the cell, 5th edn. Garland Science, New York

    Book  Google Scholar 

  5. Frost A, Unger VM, De Camilli P (2009) The BAR domain superfamily: membrane-molding macromolecules. Cell 137:191–196

    Article  CAS  Google Scholar 

  6. D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7:347–358

    Article  Google Scholar 

  7. Marks B, Stowell MHB, Vallis Y, Mills IG, Gibson A, Hopkins CR, McMahon HT (2001) GTPase activity of dynamin and resulting conformation change are essential to endocytosis. Nature 410:231–235

    Article  CAS  Google Scholar 

  8. Baschieri F, Farhan H (2012) Crosstalk of small GTPases at the Golgi apparatus. Small GTPases 3:80–90

    Article  Google Scholar 

  9. Harris KP, Littleton JT (2011) Vesicle trafficking: a Rab family profile. Curr Biol 21:R841–843

    Article  CAS  Google Scholar 

  10. Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7:9–19

    Article  CAS  Google Scholar 

  11. Chavrier P, Goud B (1999) The role of ARF and Rab GTPases in membrane transport. Curr. Opin. Cell Biol. 11:466–475

    Article  CAS  Google Scholar 

  12. Turner M, Sens P, Socci N (2005) Nonequilibrium raftlike membrane domains under continuous recycling. Phys Rev Lett 95:168301

    Article  Google Scholar 

  13. Wieland FT, Gleason ML, Serafini TA, Rothman JE (1987) The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell 50:289–300

    Article  CAS  Google Scholar 

  14. Wirtz D (2009) Particle-tracking microrheology of living cells: principles and applications. Annu Rev Biophys 38:301–326

    Article  CAS  Google Scholar 

  15. Ramakrishnan N, Rao M, Ipsen J, Sunil Kumar PB (2015) Organelle morphogenesis by active membrane remodeling. Soft Matter 11:2387

    Article  CAS  Google Scholar 

  16. Sunil Kumar PB, Gompper G, Lipowsky R (2001) Budding dynamics of multicomponent membranes. Phys Rev Lett 86:3911–3914

    Article  CAS  Google Scholar 

  17. Gompper G, Kroll D (1994) Phase diagram of fluid vesicles. Phys Rev Lett 73:2139–2142

    Article  CAS  Google Scholar 

  18. Noguchi H, Gompper G (2005) Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc Natl Acad Sci U S A 102:14159–14164

    Article  CAS  Google Scholar 

  19. Ramakrishnan N, Sunil Kumar PB, Ipsen JH (2010) Monte Carlo simulations of fluid vesicles with in-plane orientational ordering. Phys Rev E 81:041922

    Article  CAS  Google Scholar 

  20. Ramakrishnan N, Sunil Kumar PB, Ipsen JH (2013) Membrane-mediated aggregation of curvature-inducing nematogens and membrane tubulation. Biophys J 104:1018–1028

    Article  CAS  Google Scholar 

  21. Paluch E, Sykes C, Prost J, Bronens M (2006) Dynamic modes of the cortical actomyosin gel during cell locomotion and division. Trends Cell Biol 16:5–10

    Article  CAS  Google Scholar 

  22. Mills JC, Stone NL, Erhardt J, Pittman RN (1998) Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 140:627–636

    Article  CAS  Google Scholar 

  23. Burton K, Taylor DL (1997) Traction forces of cytokinesis measured with optically modified elastic substrata. Nature (London) 385:450–454

    Article  CAS  Google Scholar 

  24. Föller M, Huber SM, Lang F (2008) Erythrocyte programmed death. IUBMB Life 60:661–668

    Article  Google Scholar 

  25. Barros LF, Kanaseki T, Sabirov R, Morishima S, Castrom J, Bittner CX, Maeno E, Anod-Akatsuka Y, Okada Y (2003) Apoptotic and necrotic blebs in epithelial cells display similar neck diameters but different kinase dependency. Cell Death Differ 10:687–697

    Article  CAS  Google Scholar 

  26. Mercer J, Helenius A (2009) Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–535

    Article  Google Scholar 

  27. Charras G, Palluch E (2008) Blebs lead the way: how to migrate without lamellipodia? Nat Rev Mol Cell Biol 9:730–736

    Article  CAS  Google Scholar 

  28. Paluch EK, Raz E (2013) The role and regulation of blebs in cell migration. Curr Opin Cell Biol 25:582–590

    Article  CAS  Google Scholar 

  29. Paluch E, Piel M, Prost J, Bornens M, Sykes C (2005) Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments. Biophys J 89:724–733

    Article  CAS  Google Scholar 

  30. Tinivez J-Y, Shulze U, Salbreux G, Roensch J, Joanny J-F, Paluch E (2009) Role of cortical tension in bleb growth. Proc Natl Acad Sci U S A 106:18581–18586

    Article  Google Scholar 

  31. Charras GT, Coughlin M, Michison TJ, Mahadevan L (2008) Life and times of a cellular bleb. Biophys J 94:1836–1853

    Article  CAS  Google Scholar 

  32. Sheetz MP, Sable JE, Döbereiner H-G (2006) Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu Rev Biophys Biomol Struct 35:417–434

    Article  CAS  Google Scholar 

  33. Merkel R, Simson R, Simson DA, Hohenadl M, Boulbitch A, Wallraff E, Sackmann E (2000) A micormechanic study of cell polarity and plasma membrane cell body coupling in Dictyostelium. Biophys J 79:707–719

    Article  CAS  Google Scholar 

  34. Charras GT, Hu CK, Coughlin M, Mitchison TJ (2006) Reassembly of contractile actin cortex in cell blebs. J Cell Biol 175:477–490

    Article  CAS  Google Scholar 

  35. Sens P, Gov N (2007) Force balance and membrane shedding at the red-blood-cell surface. Phys Rev Lett 98:018102

    Article  Google Scholar 

  36. Young J, Mitran S (2010) A numerical study of cellular blebbing: a volume-conserving, fluid-structure interaction model of the entire cell. J Biomech 43:210–220

    Article  Google Scholar 

  37. Strychalski W, Guy RD (2013) A computational model of bleb formation. Math Med Biol 30:115–130

    Article  Google Scholar 

  38. Tozluoglu M, Tournier AL, Jenkins RP, Hooper S, Bates PA, Sahai E (2013) Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nat Cell Biol 15:751–762

    Article  CAS  Google Scholar 

  39. Woolley TE, Gaffney EA, Walters SL, Oliver JM, Baker RE, Goriely A (2014) Three mechanical models for blebbing and multi-blebbing. IMA J Appl Math 79:636–660

    Article  Google Scholar 

  40. Spangler EJ, Harvey CW, Revalee JD, Sunil Kumar PB, Laradji M (2011) Computer simulation of cytoskeleton-induced blebbing in lipid membranes. Phys Rev E 84:051906

    Article  Google Scholar 

  41. Revalee JD, Laradji M, Sunil Kumar PB (2008) Implicit-solvent mesoscale model based on soft-core potentials for self-assembled lipid membranes. J Chem Phys 128:035102

    Article  Google Scholar 

  42. Sikder MKU, Stone KA, Sunil Kumar PB, Laradji M (2014) Combined effect of cortical cytoskeleton and transmembrane proteins on domain formation in biomembranes. J Chem Phys 141:054902

    Article  Google Scholar 

  43. Spangler EJ, Sunil Kumar PB, Laradji M (2012) Anomalous freezing behavior of nanoscale liposomes. Soft Matter 8:10896–10904

    Article  CAS  Google Scholar 

  44. Charras GT, Yarrow JC, Horton MA, Mahadevan L, Mitchison JT (2005) Non-equilibration of hydrostatic pressure in blebbing cells. Nature (London) 435:365–369

    Article  CAS  Google Scholar 

Download references

Acknowledgements

ML acknowledges financial support from NSF (DMR-0812470), NSF (DMR 0755447), and the Research Corporation (CC66879). PBSK acknowledges financial support from CSIR-India. The authors would like to thank N. Ramakrishnan, John Ipsen, Madan Rao, Eric Spangler, Cameron Harvey, and Joel Revalee for their contributions to the studies presented in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Laradji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, P.B.S., Laradji, M. (2018). Protein-Induced Morphological Deformations of Biomembranes. In: Bassereau, P., Sens, P. (eds) Physics of Biological Membranes. Springer, Cham. https://doi.org/10.1007/978-3-030-00630-3_20

Download citation

Publish with us

Policies and ethics