Skip to main content

Protein Pattern Formation

  • Chapter
  • First Online:
Physics of Biological Membranes

Abstract

Protein pattern formation is essential for the spatial organisation of many intracellular processes like cell division, flagellum positioning, and chemotaxis. A prominent example of intracellular patterns are the oscillatory pole-to-pole oscillations of Min proteins in E. coli whose biological function is to ensure precise cell division. Cell polarisation, a prerequisite for processes such as stem cell differentiation and cell polarity in yeast, is also mediated by a diffusion–reaction process. More generally, these functional modules of cells serve as model systems for self-organisation, one of the core principles of life. Under which conditions spatio-temporal patterns emerge, and how these patterns are regulated by biochemical and geometrical factors are major aspects of current research. Here we review recent theoretical and experimental advances in the field of intracellular pattern formation, focusing on general design principles and fundamental physical mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Of course, such a process would also be limited by the duration of protein synthesis.

  2. 2.

    In general, a given reaction–diffusion equation can generate a plethora of spatio-temporal patterns, as is well known from classical equations like the complex Ginzburg-Landau equation [63] or the Gray-Scott equation [64,65,66,67,68]. Conversely, a given pattern can be produced by a vast variety of mathematical equations. Hence, one must be careful to avoid falling into the trap: “Cum hoc ergo propter hoc” (correlation does not imply causation).

  3. 3.

    It should be noted that the condition on the particle numbers mainly serves to emphasise the sequestration mechanism. In order for MinD to accumulate in polar zones the action of MinE must be disabled, and specifying that there are fewer MinE particles permits them to be spatially confined. Outside of this zone MinD can accumulate on the membrane. Recently, it has been shown that MinE’s conformational switch can transiently attenuate the action of MinE, thereby removing the requirement regarding the relative particle numbers of MinD and MinE [69].

  4. 4.

    This is surprising, because Turing instabilities are generically associated with the existence of a characteristic (or intrinsic) wave length in the literature. This is evidently not the case here.

  5. 5.

    In 1966 Mark Kac published an article entitled “Can one hear the shape of a drum?”[80]. As the dynamics (frequency spectrum) of an elastic membrane whose boundary is clamped is described by the Helmholtz equation ∇2 u + σu = 0 with Dirichlet boundaries, ∇u = 0, this amounts to asking how strongly the eigenvalues σ depend on the shape of the domain boundary. Here we ask a much more intricate question, as the dynamics of pattern-forming systems are nonlinear and we would like to know the nonlinear attractor for a given shape and size of a cell.

  6. 6.

    We note that travelling wave patterns have also been observed in vivo [90], albeit only upon massive over-expression of MinD and MinE, leading to highly elevated intracellular protein densities and pathological phenomenology [91] relative to the wild type. While the exact protein densities in the experiments have not been measured, this observation is consistent with the observation of travelling waves in fully confined compartments, where the protein densities inside microfluidic chambers were also elevated [83]. For further discussion of the effect of protein densities, we refer the reader to Sect. 4.2.

  7. 7.

    Either directly or by complex formation as for MinDE complexes.

  8. 8.

    Assuming a cylindrical geometry for simplicity, the volume-to-surface ratio is ∼r∕2, i.e. well below 1 μm for typical cell radii r.

References

  1. Thom R (1983) Mathematical models of morphogenesis. Ellis Horwood, Chichester

    Google Scholar 

  2. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B Biol Sci 237(641):37–72

    Google Scholar 

  3. Guckenheimer J, Holmes PJ (2013) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, New York

    Google Scholar 

  4. Cross M, Greenside H (2009) Pattern formation and dynamics in nonequilibrium systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Wedlich-Soldner R, Altschuler S, Wu L, Li R (2003) Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science 299(5610):1231–1235

    Article  CAS  PubMed  Google Scholar 

  6. Florian MC, Geiger H (2010) Concise review: polarity in stem cells, disease, and aging. Stem Cells 28(9):1623–1629

    Article  PubMed  PubMed Central  Google Scholar 

  7. Molendijk AJ, Bischoff F, Rajendrakumar CS, Friml J, Braun M, Gilroy S, Palme K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J 20(11):2779–2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gu Y, Vernoud V, Fu Y, Yang Z (2003) Rop GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J Exp Bot 54(380):93–101

    Article  CAS  PubMed  Google Scholar 

  9. Goehring NW, Trong PK, Bois JS, Chowdhury D, Nicola EM, Hyman AA, Grill SW (2011) Polarization of PAR proteins by advective triggering of a pattern-forming system. Science (New York, NY) 334(6059):1137–1141

    Article  CAS  Google Scholar 

  10. Bement WM, Leda M, Moe AM, Kita AM, Larson ME, Golding AE, Pfeuti C, Su K-C, Miller AL, Goryachev AB, von Dassow G (2015) Activator-inhibitor coupling between Rho signalling and actin assembly makes the cell cortex an excitable medium. Nat Cell Biol 17(11):1471–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Desai A, Mitchison TJ (2003) Microtubule polarization dynamics. Annu Rev Cell Dev Biol 13:83–117. https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.1146_annurev.cellbio.13.1.83&d=DwIFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=9EzDtkclhbxR9XXW_9P29tltxjEeSlxA3PIkIP54CYcj_sDBrGUzapT3j7jzUnmG&m=TYcRTNDOWTawN7prfjwqOj_HGeevbSvz1umSlmoSz94&s=AWJ0fQlX53F6yqBr0qCrduJGyp3GFu5187V62GPRjxM&e=

    Article  Google Scholar 

  12. Varga V, Helenius J, Tanaka K, Hyman AA, Tanaka TU, Howard J (2006) Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat Cell Biol 8(9):957–962

    Article  CAS  PubMed  Google Scholar 

  13. Varga V, Leduc C, Bormuth V, Diez S, Howard J (2009) Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization. Cell 138(6):1174–1183

    Article  CAS  PubMed  Google Scholar 

  14. Reese L, Melbinger A, Frey E (2011) Crowding of molecular motors determines microtubule depolymerization. Biophys J 101(9):2190–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Melbinger A, Reese L, Frey E (2012) Microtubule length regulation by molecular motors. Phys Rev Lett 108(25):258104

    Article  PubMed  CAS  Google Scholar 

  16. Reese L, Melbinger A, Frey E (2014) Molecular mechanisms for microtubule length regulation by kinesin-8 and xmap215 proteins. Interface Focus 4(6):20140031

    Article  PubMed  PubMed Central  Google Scholar 

  17. Raskin DM, de Boer PA (1999) MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J Bacteriol 181(20):6419–6424

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Raskin DM, de Boer PA (1999) Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc Natl Acad Sci USA 96(9):4971–4976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu Z, Lutkenhaus J (1999) Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol Microbiol 34(1):82–90

    Article  CAS  PubMed  Google Scholar 

  20. Lutkenhaus J (2007) Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu Rev Biochem 76:539–562

    Article  CAS  PubMed  Google Scholar 

  21. Loose M, Kruse K, Schwille P (2011) Protein self-organization: lessons from the min system. Annu Rev Biophys 40(1):315–336

    Article  CAS  PubMed  Google Scholar 

  22. Szeto TH, Rowland SL, Rothfield LI, King GF (2002) Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts. Proc Natl Acad Sci USA 99(24):15693–15698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu Z, Lutkenhaus J (2003) A conserved sequence at the C-terminus of MinD is required for binding to the membrane and targeting MinC to the septum. Mol Microbiol 47(2):345–355

    Article  CAS  PubMed  Google Scholar 

  24. Lackner LL, Raskin DM, de Boer PAJ (2003) ATP-dependent interactions between Escherichia coli Min proteins and the phospholipid membrane in vitro. J Bacteriol 185(3):735–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mileykovskaya E, Fishov I, Fu X, Corbin BD, Margolin W, Dowhan W (2003) Effects of phospholipid composition on MinD-membrane interactions in vitro and in vivo. J Biol Chem 278(25):22193–22198

    Article  CAS  PubMed  Google Scholar 

  26. Hu Z, Mukherjee A, Pichoff S, Lutkenhaus J (1999) The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc Natl Acad Sci USA 96(26):14819–14824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu Z, Lutkenhaus J (2001) Topological regulation of cell division in E. coli. Spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid. Mol Cell 7(6):1337–1343

    Article  CAS  PubMed  Google Scholar 

  28. Hu Z, Gogol EP, Lutkenhaus J (2002) Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE. Proc Natl Acad Sci USA 99(10):6761–6766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Park K-T, Wu W, Battaile KP, Lovell S, Holyoak T, Lutkenhaus J (2011) The min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis. Cell 146(3):396–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shih Y-L, Huang K-F, Lai H-M, Liao J-H, Lee C-S, Chang C-M, Mak H-M, Hsieh C-W, Lin C-C (2011) The N-terminal amphipathic helix of the topological specificity factor MinE is associated with shaping membrane curvature. PLoS ONE 6(6):e21425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lutkenhaus J (2012) The ParA/MinD family puts things in their place. Trends Microbiol 20(9):411–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Loose M, Mitchison TJ (2014) The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat Cell Biol 16(1):38–46

    Article  CAS  PubMed  Google Scholar 

  33. Denk J, Huber L, Reithmann E, Frey E (2016) Active curved polymers form vortex patterns on membranes. Phys Rev Lett 116(17):178301

    Article  PubMed  CAS  Google Scholar 

  34. Ramirez-Diaz DA, García-Soriano DA, Raso A, Mücksch J, Feingold M, Rivas G, Schwille P (2018) Treadmilling analysis reveals new insights into dynamic FtsZ ring architecture. PLoS Biol 16(5):e2004845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Bi E, Park H-O (2012) Cell polarization and cytokinesis in budding yeast. Genetics 191(2):347–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Freisinger T, Klünder B, Johnson J, Müller N, Pichler G, Beck G, Costanzo M, Boone C, Cerione RA, Frey E, Wedlich-Soldner R (2013) Establishment of a robust single axis of cell polarity by coupling multiple positive feedback loops. Nat Commun 4:1807

    Article  PubMed  CAS  Google Scholar 

  37. Goryachev AB, Pokhilko AV (2008) Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity. FEBS Lett 582(10):1437–1443

    Article  CAS  PubMed  Google Scholar 

  38. Klünder B, Freisinger T, Wedlich-Soldner R, Frey E (2013) GDI-mediated cell polarization in yeast provides precise spatial and temporal control of Cdc42 signaling. PLoS Comput Biol 9(12):e1003396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Bose I, Irazoqui JE, Moskow JJ, Bardes ES, Zyla TR, Lew DJ (2001) Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p, and the effector cla4p required for cell cycle-regulated phosphorylation of Cdc24p. J Biol Chem 276(10):7176–7186

    Article  CAS  PubMed  Google Scholar 

  40. Butty A-C, Perrinjaquet N, Petit A, Jaquenoud M, Segall JE, Hofmann K, Zwahlen C, Peter M (2002) A positive feedback loop stabilizes the guanine-nucleotide exchange factor Cdc24 at sites of polarization. EMBO J 21(7):1565–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kozubowski L, Saito K, Johnson JM, Howell AS, Zyla TR, Lew DJ (2008) Symmetry-breaking polarization driven by a Cdc42p GEF-PAK complex. Curr Biol 18(22):1719–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bendezu FO, Vincenzetti V, Vavylonis D, Wyss R, Vogel H, Martin SG (2015) Spontaneous Cdc42 polarization independent of GDI-mediated extraction and actin-based trafficking. PLoS Biol 13(4):e1002097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Laan L, Koschwanez JH, Murray AW (2015) Evolutionary adaptation after crippling cell polarization follows reproducible trajectories. eLife 4:e09638

    Article  PubMed  PubMed Central  Google Scholar 

  44. Goldstein B, Macara IG (2007) The PAR proteins: fundamental players in animal cell polarization. Dev Cell 13(5):609–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Munro E, Nance J, Priess JR (2004) Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev Cell 7(3):413–424

    Article  CAS  PubMed  Google Scholar 

  46. Goehring NW (2014) PAR polarity: from complexity to design principles. Exp Cell Res 328(2):258–266

    Article  CAS  PubMed  Google Scholar 

  47. Goehring NW, Grill SW (2013) Cell polarity: mechanochemical patterning. Trends in Cell Biol 23(2):72–80

    Article  CAS  Google Scholar 

  48. Green RA, Paluch E, Oegema K (2012) Cytokinesis in animal cells. Annu Rev Cell Dev Biol 28:29–58

    Article  CAS  PubMed  Google Scholar 

  49. Gerdes K, Howard M, Szardenings F (2010) Pushing and pulling in prokaryotic DNA segregation. Cell 141(6):927–942

    Article  CAS  PubMed  Google Scholar 

  50. Bange G, Sinning I (2013) SIMIBI twins in protein targeting and localization. Nat Struct Mol Biol 20(7):776–780

    Article  CAS  PubMed  Google Scholar 

  51. Treuner-Lange A, Søgaard-Andersen L (2014) Regulation of cell polarity in bacteria. J Cell Biol 206(1):7–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schumacher D, Bergeler S, Harms A, Vonck J, Huneke-Vogt S, Frey E, Søgaard-Andersen L (2017) The PomXYZ proteins self-organize on the bacterial nucleoid to stimulate cell division. Dev Cell 41(3):299–314

    Article  CAS  PubMed  Google Scholar 

  53. Bergeler S, Frey E (2018) Regulation of Pom cluster dynamics in Myxococcus xanthus. PLoS Comput Biol 14(8):e1006358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Schuhmacher JS, Thormann KM, Bange G, Albers S-V (2015) How bacteria maintain location and number of flagella? FEMS Microbiol Rev 39(6):812–822

    Article  CAS  PubMed  Google Scholar 

  55. Halatek J, Brauns F, Frey E (2018) Self-organization principles of intracellular pattern formation. Philos Trans R Soc B 373(1747):20170107

    Article  CAS  Google Scholar 

  56. Segel LA, Jackson JL (1972) Dissipative structure: an explanation and an ecological example. J Theor Biol 37(3):545–559

    Article  CAS  PubMed  Google Scholar 

  57. Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science (New York, NY) 329(5999):1616–1620

    Article  CAS  Google Scholar 

  58. Halatek J, Frey E (2018) Rethinking pattern formation in reaction–diffusion systems. Nat Phys 14(5):507–514

    Article  CAS  Google Scholar 

  59. Huang KC, Meir Y, Wingreen NS (2003) Dynamic structures in Escherichia coli: spontaneous formation of MinE rings and MinD polar zones. Proc Natl Acad Sci USA 100(22):12724–12728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Halatek J, Frey E (2012) Highly canalized MinD transfer and MinE sequestration explain the origin of robust MinCDE-protein dynamics. Cell Rep 1(6):741–752

    Article  CAS  PubMed  Google Scholar 

  61. Meacci G, Ries J, Fischer-Friedrich E, Kahya N, Schwille P, Kruse K (2006) Mobility of Min-proteins in Escherichia coli measured by fluorescence correlation spectroscopy. Phys Biol 3(4):255–263

    Article  CAS  PubMed  Google Scholar 

  62. Shih Y-L, Fu X, King GF, Le T, Rothfield L (2002) Division site placement in E.coli: mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains. EMBO J 21(13):3347–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Aranson IS, Kramer L (2002) The world of the complex Ginzburg-Landau equation. Rev Mod Phys 74(January):99–143

    Article  Google Scholar 

  64. Gray P, Scott SK (1983) Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability. Chem Eng Sci 38(1):29–43

    Article  CAS  Google Scholar 

  65. Gray P, Scott SK (1984) Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Oscillations and instabilities in the system A + 2B → 3B; B → C. Chem Eng Sci 39(6):1087–1097

    Article  CAS  Google Scholar 

  66. Gray P, Scott SK (1985) Sustained oscillations and other exotic patterns of behavior in isothermal reactions. J Phys Chem 89(1):22–32

    Article  CAS  Google Scholar 

  67. Pearson JE (1993) Complex patterns in a simple system. Science (New York, NY) 261(5118):189–192

    Article  CAS  Google Scholar 

  68. Lee KJ, McCormick WD, Ouyang Q, Swinney HL (1993) Pattern formation by interacting chemical fronts. Science (New York, NY) 261(5118):192–194

    Article  CAS  Google Scholar 

  69. Denk J, Kretschmer S, Halatek J, Hartl C, Schwille P, Frey E (2018) MinE conformational switching confers robustness on self-organized Min protein patterns. Proc Natl Acad Sci USA 115(18):4553–4558

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu F, van Schie BGC, Keymer JE, Dekker C (2015) Symmetry and scale orient Min protein patterns in shaped bacterial sculptures. Nat Nanotechnol 10(8):719–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shih Y-L, Kawagishi I, Rothfield L (2005) The MreB and Min cytoskeletal-like systems play independent roles in prokaryotic polar differentiation. Mol Microbiol 58(4):917–928

    Article  CAS  PubMed  Google Scholar 

  72. Wu F, Halatek J, Reiter M, Kingma E, Frey E, Dekker C (2016) Multistability and dynamic transitions of intracellular Min protein patterns. Mol Syst Biol12(6):642–653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Corbin BD, Yu X-C, Margolin W (2002) Exploring intracellular space: function of the Min system in round-shaped Escherichia coli. EMBO J 21(8):1998–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Touhami A, Jericho M, Rutenberg AD (2006) Temperature dependence of MinD oscillation in Escherichia coli: running hot and fast. J Bacteriol 188(21):7661–7667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Varma A, Huang KC, Young KD (2008) The Min system as a general cell geometry detection mechanism: branch lengths in Y-shaped Escherichia coli cells affect Min oscillation patterns and division dynamics. J Bacteriol 190(6):2106–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Männik J, Wu F, Hol FJH, Bisicchia P, Sherratt DJ, Keymer JE, Dekker C (2012) Robustness and accuracy of cell division in Escherichia coli in diverse cell shapes. Proc Natl Acad Sci USA 109(18):6957–6962

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fange D, Elf J (2006) Noise-induced Min phenotypes in E. coli. PLoS Comput Biol 2(6):e80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Renner LD, Weibel DB (2012) MinD and MinE interact with anionic phospholipids and regulate division plane formation in Escherichia coli. J Biol Chem 287(46):38835–38844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Otsuji M, Ishihara S, Co C, Kaibuchi K, Mochizuki A, Kuroda S (2007) A mass conserved reaction-diffusion system captures properties of cell polarity. PLoS Comput Biol 3(6):e108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kac M (1966) Can one hear the shape of a drum? Am Math Mon 73(4):1

    Article  Google Scholar 

  81. Thalmeier D, Halatek J, Frey E (2016) Geometry-induced protein pattern formation. Proc Natl Acad Sci USA 113(3):548–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Loose M, Fischer-Friedrich E, Ries J, Kruse K, Schwille P (2008) Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science (New York, NY) 320(5877):789–792

    Article  CAS  Google Scholar 

  83. Caspi Y, Dekker C (2016) Mapping out min protein patterns in fully confined fluidic chambers. eLife 5:e19271

    Article  PubMed  PubMed Central  Google Scholar 

  84. Loose M, Fischer-Friedrich E, Herold C, Kruse K, Schwille P (2011) Min protein patterns emerge from rapid rebinding and membrane interaction of MinE. Nat Struct Mol Biol 18(5):577–583

    Article  CAS  PubMed  Google Scholar 

  85. Schweizer J, Loose M, Bonny M, Kruse K, Mönch I, Schwille P (2012) Geometry sensing by self-organized protein patterns. Proc Natl Acad Sci USA 109(38):15283–15288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zieske K, Schwille P (2013) Reconstitution of pole-to-pole oscillations of min proteins in microengineered polydimethylsiloxane compartments. Angew Chem Int Ed Engl 52(1):459–462

    Article  CAS  PubMed  Google Scholar 

  87. Zieske K, Chwastek G, Schwille P (2016) Protein patterns and oscillations on lipid monolayers and in microdroplets. Angew Chem 128(43):13653–13657

    Article  Google Scholar 

  88. Ivanov V, Mizuuchi K (2010) Multiple modes of interconverting dynamic pattern formation by bacterial cell division proteins. Proc Natl Acad Sci USA 107(18):8071–8078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zieske K, Schwille P (2014) Reconstitution of self-organizing protein gradients as spatial cues in cell-free systems. eLife 3:e03949

    Article  PubMed Central  CAS  Google Scholar 

  90. Bonny M, Fischer-Friedrich E, Loose M, Schwille P, Kruse K (2013) Membrane binding of MinE allows for a comprehensive description of Min-protein pattern formation. PLoS Comput Biol 9(12):e1003347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Sliusarenko O, Heinritz J, Emonet T, Jacobs-Wagner C (2011) High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol Microbiol 80(3):612–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vecchiarelli AG, Li M, Mizuuchi M, Hwang LC, Seol Y, Neuman KC, Mizuuchi K (2016) Membrane-bound MinDE complex acts as a toggle switch that drives Min oscillation coupled to cytoplasmic depletion of MinD. Proc Natl Acad Sci USA 113(11):E1479–E1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Halatek J, Frey E (2014) Effective 2D model does not account for geometry sensing by self-organized proteins patterns. Proc Natl Acad Sci USA 111(18):E1817–E1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kretschmer S, Zieske K, Schwille P (2017) Large-scale modulation of reconstituted Min protein patterns and gradients by defined mutations in MinE’s membrane targeting sequence. PLoS one 12(6):e0179582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Fridtjof Brauns, Yaron Caspi, Cees Dekker, Jonas Denk, and Fabai Wu for helpful discussions. This research was supported by the German Excellence Initiative via the program “NanoSystems Initiative Munich” (NIM), and the Deutsche Forschungsgemeinschaft (DFG) via project A09 and B02 within the Collaborative Research Center (SFB 1032) “Nanoagents for spatio-temporal control of molecular and cellular reactions”. SK was supported by a DFG fellowship through QBM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Frey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frey, E., Halatek, J., Kretschmer, S., Schwille, P. (2018). Protein Pattern Formation. In: Bassereau, P., Sens, P. (eds) Physics of Biological Membranes. Springer, Cham. https://doi.org/10.1007/978-3-030-00630-3_10

Download citation

Publish with us

Policies and ethics