Skip to main content

Genomic Relationships, Diversity, and Domestication of Ananas Taxa

  • Chapter
  • First Online:
Genetics and Genomics of Pineapple

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 22))

Abstract

Ananas is home to cultivated pineapple (A. comosus var. comosus) and two taxa domesticated for fiber production (var. bracteatus and var. erectifolius). Ananas has undergone numerous taxonomic revisions over the past three centuries because of its leaky reproductive barriers and unclear origins. Early studies on Ananas genetic diversity found clear separation among the current two species and five botanical varieties, but indicated little variation exists within cultivated pineapple. This suggested much of the phenotypic variation in pineapple was due to somatic mutation rather than intense domestication and breeding efforts. The recent completion of the “F153” pineapple reference genome and resequencing of 89 diverse Ananas accessions provided insights into the relationships, diversity, and domestication history of Ananas. Cultivated pineapple has tremendous genetic diversity with extensive admixture and interbreeding. Pineapple was shaped primarily by sexual selection during its domestication, but evidence of asexual selection was also found. These findings challenged the notion of a one-step domestication in clonally propagated species. The wealth of new genomic resources within Ananas will be useful to further study the origins of this group and for establishing advanced pineapple breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aradhya MK, Zee F, Manshardt RM (1994) Isozyme variation in cultivated and wild pineapple. Euphytica 79:87–99

    Article  CAS  Google Scholar 

  • Bartholomew DP, Hawkins RA, Lopez JA (2012) Hawaii pineapple: the rise and fall of an industry. Hortscience 47:1390–1398

    Google Scholar 

  • Benzing DH (2000) Bromeliaceae: profile of an adaptive radiation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bredeson JV, Lyons JB, Prochnik SE, Wu GA, Ha CM, Edsinger-Gonzales E, Grimwood J, Schmutz J, Rabbi IY, Egesi C (2016) Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat Biotechnol 34:562–570

    Article  CAS  Google Scholar 

  • Brewbaker JL, Gorrez DD (1967) Genetics of self-incompatibility in the monocot genera, Ananas (pineapple) and Gasteria. Am J Bot 54:611–616

    Article  Google Scholar 

  • Cabral J, Coppens d'Eeckenbrugge G, De Matos A (1998) Introduction of selfing in pineapple breeding. In: III International Pineapple Symposium, vol 529. pp 165–168

    Google Scholar 

  • Clement CR, de Cristo-Araújo M, Coppens D’Eeckenbrugge G, Alves Pereira A, Picanço-Rodrigues D (2010) Origin and domestication of native Amazonian crops. Diversity 2:72–106

    Article  Google Scholar 

  • Coppens d’Eeckenbrugge G, Leal F, Duval M (1997) Germplasm resources of pineapple. Hort Rev 21:133–175

    Google Scholar 

  • Coppens d'Eeckenbrugge G, Duval MF, Van Miegroet F (1992) Fertility and self-incompatibility in the genus Ananas. In: I International Pineapple Symposium, vol 334. pp 45–52

    Google Scholar 

  • d’Eeckenbrugge GC, Leal F, Bartholomew D (2003). Morphology, anatomy and taxonomy. In: The pineapple: botany, production and uses. pp 13–32

    Google Scholar 

  • DeWald M, Moore G, Sherman W (1992) Isozymes in Ananas (pineapple): genetics and usefulness in taxonomy. J Am Soc Hortic Sci 117:491–496

    CAS  Google Scholar 

  • Duan N, Bai Y, Sun H, Wang N, Ma Y, Li M, Wang X, Jiao C, Legall N, Mao L (2017) Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat Commun 8:249

    Article  Google Scholar 

  • Duval M-F, Noyer J-L, Perrier X, d’Eeckenbrugge C, Hamon P (2001) Molecular diversity in pineapple assessed by RFLP markers. Theor Appl Genet 102:83–90

    Article  CAS  Google Scholar 

  • Duval M-F, Buso GS, Ferreira F, Noyer J-L, d'Eeckenbrugge GC, Hamon P, Ferreira M (2003) Relationships in Ananas and other related genera using chloroplast DNA restriction site variation. Genome 46:990–1004

    Article  CAS  Google Scholar 

  • Feng S, Tong H, Chen Y, Wang J, Chen Y, Sun G, He J, Wu Y (2013) Development of pineapple microsatellite markers and germplasm genetic diversity analysis. Biomed Res Int 2013:317912

    PubMed  PubMed Central  Google Scholar 

  • García M (1988) Etude taxinomique du genre Ananas. In: Utilisation de la variabilité enzymatique

    Google Scholar 

  • Givnish TJ, Barfuss MH, Van Ee B, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC (2014) Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Mol Phylogenet Evol 71:55–78

    Article  Google Scholar 

  • Kato CY, Nagai C, Moore PH, Zee F, Kim MS, Steiger DL, Ming R (2005) Intra-specific DNA polymorphism in pineapple (Ananas comosus (L.) Merr.) assessed by AFLP markers. Genet Resour Crop Evol 51:815–825

    Article  Google Scholar 

  • Kole C (2011) Wild crop relatives: genomic and breeding resources. Springer Science & Business Media, Cereals

    Google Scholar 

  • Kumar S, Bink MC, Volz RK, Bus VG, Chagné D (2012) Towards genomic selection in apple (Malus× domestica Borkh.) breeding programmes: prospects, challenges and strategies. Tree Genet Genomes 8:1–14

    Article  Google Scholar 

  • Leal F, Coppens G (1996) Pineapple

    Google Scholar 

  • Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46(11):1220–1226

    Article  CAS  Google Scholar 

  • Manzanares C, Barth S, Thorogood D, Byrne SL, Yates S, Czaban A, Asp T, Yang B, Studer B (2015) A gene encoding a DUF247 domain protein cosegregates with the S self-incompatibility locus in perennial ryegrass. Mol Biol Evol 33:870–884

    Article  Google Scholar 

  • Manzanares C, Barth S, Thorogood D, Byrne SL, Yates S, Czaban A, Asp T, Yang B, Studer B (2016) A gene encoding a DUF247 domain protein cosegregates with the S self-incompatibility locus in perennial ryegrass. Mol Biol Evol 33:870–884

    Article  CAS  Google Scholar 

  • McKey D, Elias M, Pujol B, Duputié A (2010) The evolutionary ecology of clonally propagated domesticated plants. New Phytol 186:318–332

    Article  Google Scholar 

  • Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, Bowers JE, Lyons E, Wang M-L, Chen J, Biggers E (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47:1435–1442

    Article  CAS  Google Scholar 

  • Moyle R, Ripi J, Fairbairn DJ, Crowe M, Botella J (2006) The pineapple EST sequencing and microarray project. Acta Hortic 702:47

    Article  CAS  Google Scholar 

  • Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia J-M, Ware D (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci 108:3530–3535

    Article  CAS  Google Scholar 

  • Neuteboom LW, Matsumoto KO, Christopher DA (2009) An extended AE-rich N-terminal trunk in secreted pineapple cystatin enhances inhibition of fruit bromelain and is posttranslationally removed during ripening. Plant Physiol 151:515–527

    Article  CAS  Google Scholar 

  • Ramu P, Esuma W, Kawuki R, Rabbi IY, Egesi C, Bredeson JV, Bart RS, Verma J, Buckler ES, Lu F (2017) Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nat Genet 49:959–963

    Article  CAS  Google Scholar 

  • Smith LB (1934) Geographical evidence on the lines of evolution in the Bromeliaceae. Bot Jb 66:446–468

    Google Scholar 

  • Stern C (1936) Somatic crossing over and segregation in Drosophila melanogaster. Genetics 21:625

    CAS  PubMed  PubMed Central  Google Scholar 

  • VanBuren R, Bryant D, Bushakra JM, Vining KJ, Edger PP, Rowley ER, Priest HD, Michael TP, Lyons E, Filichkin SA (2016) The genome of black raspberry (Rubus occidentalis). Plant J 87(6):535–547

    Article  CAS  Google Scholar 

  • Wöhrmann T, Weising K (2011) In silico mining for simple sequence repeat loci in a pineapple expressed sequence tag database and cross-species amplification of EST-SSR markers across Bromeliaceae. Theor Appl Genet 123:635–647

    Article  Google Scholar 

  • Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530

    Article  CAS  Google Scholar 

  • Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

VanBuren, R. (2018). Genomic Relationships, Diversity, and Domestication of Ananas Taxa. In: Ming, R. (eds) Genetics and Genomics of Pineapple. Plant Genetics and Genomics: Crops and Models, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-00614-3_18

Download citation

Publish with us

Policies and ethics