Skip to main content

The Variety of Deep Eutectic Solvents

  • Chapter
  • First Online:
Book cover Deep Eutectic Solvents

Abstract

The following definition is generally used in this book: deep eutectic solvents (DESs) are binary mixtures of definite composition of two components, one of which being ionic, that yield a liquid phase at ambient conditions, ≤25 °C. Some cases that do not conform to this restrictive definition are, however, also included, since they have properties and uses similar to those that do. The general mode of preparation of deep eutectic solvents, if their ingredients are solids at ambient conditions, is to mix the components at the prescribed molar ratio and heat the mixture to a moderately elevated temperature (generally 60–100 °C) for a few hours until the entire mass is converted to a homogeneous clear liquid. If one of the ingredients is itself liquid at ambient conditions the other component is dissolved in it, if necessary by moderate heating for some time. A variant is to dissolve both components in water, which is then vacuum evaporated or removed by freeze-drying, and to dry the resulting deep eutectic solvent in a desiccator [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH (2013) Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta 766:61–68

    Article  CAS  PubMed  Google Scholar 

  2. Espino M, de los Ángeles Fernández M, Gomez FJV, Silva MF (2016) Natural designer solvents for greening analytical chemistry. Trends Anal Chem 76:126–136

    Article  CAS  Google Scholar 

  3. Garcia G, Atilhan M, Aparicio S (2015) An approach for the rationalization of melting temperature for deep eutectic solvents from DFT. Chem Phys Lett 634:151–155

    Article  CAS  Google Scholar 

  4. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 2003:70–71

    Article  CAS  Google Scholar 

  5. Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM (2011) Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst. Separ Purif Technol 81:216–222

    Article  CAS  Google Scholar 

  6. Gilman H, Jones RG (1943) 2,2,2-Trifluoroethylamine and 2,2,2-trifluorodiazoethane. J Am Chem Soc 65:1458–1460

    Article  CAS  Google Scholar 

  7. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147

    Article  CAS  PubMed  Google Scholar 

  8. Lu M, Han G, Jiang Y, Zhang X, Deng D, Ai N (2015) Solubilities of carbon dioxide in the eutectic mixture of levulinic acid (or furfuryl alcohol) and choline chloride. J Chem Thermodyn 88:72–77

    Article  CAS  Google Scholar 

  9. Florindo C, Oliveira FS, Rebelo LPN, Fernandes AM, Marrucho IM (2014) Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustainable Chem Eng 2:2416–2425

    Article  CAS  Google Scholar 

  10. Berthod A, Ruiz-Angel MJ, Carda-Broch S (2018) Recent advances in ionic liquid uses in separation techniques. J Cromatogr A (ahead of print). https://doi.org/10.1016/j.chroma.20174.09.044

  11. Maugeri Z, Dominguez de Maria P (2012) Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: levulinic acid and sugar-based polyols. RSC Adv 2:421–425

    Article  CAS  Google Scholar 

  12. Zhang Q, de Olivera Vigier K, Royer S, Jerome F (2012) Deep eutectic solvents: synthesis, properties, and application. Chem Soc Rev 41:7108–7146

    Article  CAS  PubMed  Google Scholar 

  13. Guo W, Hou Y, Ren S, Wu W, Tian S (2013) Formation of deep eutectic solvents by phenols and choline chloride and their physical properties. J Chem Eng Data 58:866–872

    Article  CAS  Google Scholar 

  14. Shahbaz K, AlNashef LM, Lin RJT, Hashim MA, Mjalli FS, Farid MM (2016) A novel calcium chloride hexahydrate-based deep eutectic solvent as a phase change material. Solar Energy Mater Solar Cells 155:147–154

    Article  CAS  Google Scholar 

  15. Abbott AP, Cullis PM, Gibson MJ, Harris RC, Raven E (2007) Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem 9:868–872

    Article  CAS  Google Scholar 

  16. Abbott AP, Caper G, Gray S (2006) Design of improved eutectic solvents using hole theory. Chem Phys Chem 7:803–806

    Article  CAS  PubMed  Google Scholar 

  17. Chen Z, Ludwig M, Warr GG, Atkin R (2017) Effect of cation alkyl chain length on surface forces and physical properties in deep eutectic solvents. Coll Interf Sci 494:373–379

    Article  CAS  Google Scholar 

  18. Siongco KR, Leron RB, Li MH (2013) Densities, refractive indices, and viscosities of N, N-diethylethanolammonium chloride-glycerol or—ethylene glycol deep eutectic solvents abd their aqueous solutions. J Chem Thermodyn 65:65–72

    Article  CAS  Google Scholar 

  19. Bahadori L, Charabarti MH, Mjalli FS, AlAnashef IN, Abdul Mahan NS, Hashim MA (2013) Physicochemical properties of ammonium-based deep eutectic solvents and their electrochemical evaluation using organometallic reference redox systems. Electrochim Acta 113:205–211

    Article  CAS  Google Scholar 

  20. Wang Y, Hou Y, Wu W, Liu D, Ji Y, Ren S (2016) Roles of a hydrogen bond donor and a hydrogen bond acceptor in the extraction of toluene from n-heptane using deep eutectic solvents. Green Chem 18:3089–3097

    Article  CAS  Google Scholar 

  21. Jibril B, Mjalli F, Naser J, Gano Z (2014) New tetrapropylammonium bromide-based deep eutectic solvents: synthesis and characterizations. J Mol Liq 199:462–469

    Article  CAS  Google Scholar 

  22. Mjalli FS, Naser J, Jibril B, Alizadeh V, Gano Z (2014) Tetrabutylammonium chloride based liquid analogues and their physical properties. J Chem Eng Data 59:2242–2251

    Article  CAS  Google Scholar 

  23. Naser J, Mjalli FS, Gano Z (2016) Molar heat capacity of type III deep eutectic solvents. J Chem Eng Data 61:1608–1615

    Article  CAS  Google Scholar 

  24. Hayyan M, Aissaoui T, Hashim MA, Alsaadi MA, Hayyan A (2015) Triethylene glycol based deep eutectic solvents and their physical properties. J Taiwan Inst Chem Eng 50:24–30

    Article  CAS  Google Scholar 

  25. Su HZ, Yin JM, Liu QS, Li CP (2015) Properties of four deep eutectic solvents: density, electrical conductivity, dynamic viscosity, and refractive index. Acta Phys Chim Sin 31:1468–1473

    Google Scholar 

  26. Li JJ, Xiao H, Tang XD, Zhou M (2016) Green carboxylic acid deep eutectic solvents as solvents for extractive desulfurization. Energy Fuels 30:5411–5418

    Article  CAS  Google Scholar 

  27. Ali E, Hadj-Kali MK, Mulyono S, Alnashef I (2016) Analysis of operating conditions for CO2 capturing process using deep eutectic solvents. Int J Greenhouse Gas Cont 47:342–350

    Article  CAS  Google Scholar 

  28. Rodriguez NR, Requejo PF, Kroon MC (2015) Aliphatic-aromatic separation using deep eutectic solvents as extracting agents. Ind Eng Chem Res 54:11404–11412

    Article  CAS  Google Scholar 

  29. Taysun MB, Sert E, Atalay FS (2015) Physical properties of benzyltrimethylammonium chloride based deep eutectic solvents and employment as catalysts. J Mol Liq 223:845–852

    Article  CAS  Google Scholar 

  30. De Santi V, Cardellini F, Brinchi L, Germani R (2012) Novel Brønsted deep eutectic solvent as reaction media for esterification of carboxylic acid with alcohols. Tetrahedron Lett 53:5151–5155

    Article  CAS  Google Scholar 

  31. Basaiahgari A, Panda S, Gardas RL (2017) Acoustic, volumetric, transport, optical, and rheological properties of benzyltripropylammonium chloride based deep eutectic solvents. Fluid Phase Equil 448:41–49

    Article  CAS  Google Scholar 

  32. Zubeir LF, Lacroix MHM, Kroon MC (2014) Low transition temperature mixtures as innovative and sustainable CO2 capture solvents. J Phys Chem B 118:14429–14441

    Article  CAS  Google Scholar 

  33. Mirza NR, Nicholas NJ, Wu Y, Smith KH, Kentish SE, Stevens GW (2017) Viscosities and carbon dioxide solubilities of guanidine carbonate and malic acid-based eutectic solvents. J Chem Eng Data 62:348–354

    Article  CAS  Google Scholar 

  34. Garcia G, Aparicio S, Ullah R, Atilhan M (2015) Deep eutectic solvents: physicochemical properties and gas separation applications. Energy Fuels 29:2616–2644

    Article  CAS  Google Scholar 

  35. AlOmar MK, Hayyan M, Alsaadi MA, Akib S, Hayyan A, Hashim MA (2016) Glycerol-based deep eutectic solvents: physical properties. J Mol Liq 215:98–103

    Article  CAS  Google Scholar 

  36. Kudlak B, Qwczarek K, Namiesnik J (2015) Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—a review. Environ Sci Pollut Res 22:11975–11992

    Article  CAS  Google Scholar 

  37. Hussey CL, Sheffler TB (1982) Composition determination of liquid chloroaluminate molten salts by nuclear magnetic resonance spectroscopy. Anal Chem 54:2378–2379

    Article  Google Scholar 

  38. Abbott AP, Barron JC, Ryder KS, Wilson D (2007) Eutectic based ionic liquids with metal-containing anions and cations. Chem Eur J 13:6495–6501

    Article  CAS  PubMed  Google Scholar 

  39. Abood HMA, Abbott AP, Ballantyne AD, Ryder KS (2011) Do all ionic liquids need organic cations? Characterization of [AlCl2·namide]+AlCl4 and comparison with imidazolium based systems. Chem Comm 47:3523–3525

    Article  CAS  PubMed  Google Scholar 

  40. Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V (2001) Preparation of novel moisture-stable Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem Comm 2001:2010–2011

    Article  CAS  Google Scholar 

  41. Abbott AP, Al-Barzinjy AA, Abbott PD, Frisch G, Harris RC, Hartley J, Ryder KS (2014) Speciation, physical and electrolytic properties of eutectic mixtures based on CrCl3·6H2O and urea. Phys Chem Chem Phys 16:9047–9055

    Article  CAS  PubMed  Google Scholar 

  42. Shahbaz K, AlNashef IM, Lin RJT, Hashim MA, Mjalli ES, Farid MM (2016) A novel calcium chloride hexahydrate-based deep eutectic solvent as a phase change material. Solar Energy Mater Solar Cell 155:147–155

    Article  CAS  Google Scholar 

  43. Abbott AP, Capper G, Davies DL, Rasheed R (2004) Ionic liquids based on metal halide/substituted quaternary ammonium salt mixtures. Inorg Chem 43:3447–3454

    Article  CAS  PubMed  Google Scholar 

  44. Naser J, Mjalli FS, Jibril B, Al-Hatmi S, Gano Z (2013) Potassium carbonate as a salt for deep eutectic solvents. Intl J Chem Eng Appl 4:114–118

    CAS  Google Scholar 

  45. Liu B, Wei F, Zhao J, Wang Y (2013) Characterization of amide-thiocyanate eutectic ionic liquids and their application in SO2 absorption. RSC Adv 3:2470–2476

    Article  CAS  Google Scholar 

  46. Liang H, Li H, Wang Z, Wu F, Chem L, Huang X (2001) New binary room-temperature molten salt electrolytes based on urea and LITFSI. J Phys Chem B 105:9966–9969

    Article  CAS  Google Scholar 

  47. Hu Y, Li H, Hueng X, Chem L (2004) Novel room temperature molten salt electrolytes based on LITFSI and acetamide for lithium batteries. Electrochem Comm 6:28–32

    Article  CAS  Google Scholar 

  48. Boisset A, Jacquemin J, Anouti M (2013) Physical properties of a new deep eutectic solvent based on lithium bis[trifluoromethl)sulfonyl]imide and N-methyacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors. Electrochim Acta 102:120–126

    Article  CAS  Google Scholar 

  49. Baokou X, Anouti M (2015) Physical properties of a new deep eutectic solvent based on a sulfonium ionic liquid as a suitable electrolyte for electric double-layer capacitors. J Phys Chem C 119:970–979

    Article  CAS  Google Scholar 

  50. Roehrer S, Bezold F, Garcia EM, Minceva M (2016) Deep eutectic solvents in countercurrent and centrifugal partition chromatography. J Chromatogr A 1434:102–110

    Article  CAS  PubMed  Google Scholar 

  51. Zeng CX, Qi SJ, Xin RP, Yang B, Wang YH (2016) Synergistic behavior of betaine-urea mixture: formation of deep eutectic solvent. J Mol Liq 219:74–78

    Article  CAS  Google Scholar 

  52. Alonso DA, Baeza A, Chinchilla R, Guillena G, Pastor IM, Ramon DJ (2016) Deep eutectic solvents: the organic reaction medium of the century. Eur J Org Chem 2016:612–632

    Article  CAS  Google Scholar 

  53. Cardellini F, Tiecco M, Germani R, Cardinali G, Corte L, Roscini L, Spreti N (2014) Novel zwitterionic deep eutectic solvents from trimethylglycine and carboxylic acids: characterization of their properties and their toxicity. RSC Adv 4:55990–56002

    Article  CAS  Google Scholar 

  54. Mjalli FS (2016) Novel amino acids based ionic liquids analogues: acidic and basic amino acids. J Taiwan Inst Chem Eng 61:64–74

    Article  CAS  Google Scholar 

  55. Mjalli FS, AlHajri R, AlMuhtaseb A, Ahmed O, Nagaraju M (2016) Novel amino acid-based ionic liquid analogues: neutral hydroxylic and sulphur-containing amino acids. Asia Pac J Chem Eng 11:683–694

    Article  CAS  Google Scholar 

  56. Domanska U, Bogel-Lukasik R (2005) Physicochemical properties and solubility of alkyl-(2-hydroxyethyl)-dimethylammonium bromide. J Phys Chem B 109:12124–12132

    Article  CAS  PubMed  Google Scholar 

  57. Domanska U (2006) Thermophysical properties and thermodynamic phase behavior of ionic liquids. Thermochim Acta 448:19–30

    Article  CAS  Google Scholar 

  58. Domanska U, Krolikowski M (2010) Phase equilibria of the binary systems (1-butyl-3-methylimidazolium tosylate ionic liquid + water or organic solvent). J Chem Thermodyn 42:355–362

    Article  CAS  Google Scholar 

  59. Domanska U, Krolikowski M (2010) Phase equilibria of the binary systems (N-hexyl-3-methypyridinium tosylate ionic liquid + water or organic solvent). J Chem Thermodyn 43:1488–1494

    Article  CAS  Google Scholar 

  60. Letcher TM, Ramjugernath D, Tumba K, Krolikowsko M, Domanska U (2010) (Solid + liquid) and (liquid + liquid) phase equilibria and correlation of the binary systems {N-butyl-3-methylpyridinium tosylate + water, or + an alcohol, or + a hydrocarbon}. Fluid Phase Equil 294:89–97

    Article  CAS  Google Scholar 

  61. Krolikowski M, Karpinska M, Zawadzki M (2013) Phase equilibria study of (ionic liquid + water) binary mixtures. Fluid Phase Equil 354:66–74

    Article  CAS  Google Scholar 

  62. Domanska U, Krolikowski M, Paduszynski K (2011) Physicochemical and phase behavior of piperidinium-based ionic liquids. Fluid Phase Equil 303:1–9

    Article  CAS  Google Scholar 

  63. Domanska U, Krolikowski M (2011) Phase behavior of 1-butyl-1-methylpyrrolidinium thiocyanate ionic liquid. Fluid Phase Equil 308:55–63

    Article  CAS  Google Scholar 

  64. Krolikowski M (2014) (Solid-Liquid) and (liquid-liquid) phase equilibria of (IL + water) binary systems. The influence of the ionic liquid structure on the mutual solubility. Fluid Phase Equil 361:273–281

    Article  CAS  Google Scholar 

  65. Zawadzki M, Krolikowski M, Antonowicz J, Lipinski P, Karpinska M (2016) Physicochemical and thermodynamic properties of the (1-alkyl-1-methylmorpholinium bromide [C1Cn=3,4,5MOR]Br, or 1-methyl-1-pentylpiperidinium bromide [[C1C5PIP]Br + water) binary systems. J Chem Thermodyn 98:324–337

    Article  CAS  Google Scholar 

  66. Krolikowski M, Karpinska M, Zawadzki M (2012) Phase equilibria studies of the binary systems (N-hexylisoquinolinium thiocyanate ionic liquid + organic solvent or water). J Phys Chem B 8:4292–4299

    Article  CAS  Google Scholar 

  67. Domanska U, Zawadzki M, Tshibangu MM, Ramjugernath D, Letcher TM (2010) Phase equilibria study of (N-butylquinolinium bis(trifluoromethylsulfonyl)imide + aromatic hydro-carbons, or an alcohol) binary systems. J Chem Thermodyn 42:1180–1186

    Article  CAS  Google Scholar 

  68. Domanska U, Krolikowski M, Ramjugernath D, Letcher TM, Tumba K (2010) Phase equilibria and modeling of pyridinium-based ionic liquid solutions. J Phy Chem B 114:15011–15017

    Article  CAS  Google Scholar 

  69. Linke WF, Seidel A (1958) Solubilities of inorganic and metal-organic compounds, 4th edn, vol I, A–Ir, American Chemical Society, Washington

    Google Scholar 

  70. Linke WF, Seidell A (1965) Solubilities of inorganic and metal-organic compounds, 4th edn, vol II, K–Z, American Chemical Society, Washington

    Google Scholar 

  71. Krigintsev AN, Trushnikova LN, Lavrent’eva VG (1972) Rastvorimost’ Neorganicheskikh Veshchesty v Vode, Khimiya, Leningrad

    Google Scholar 

  72. Marcus Y (2018) Aqueous salt hydrates: unconventional deep eutectic solvents. ACS Sustain Chem Eng 5:11780–11787

    Article  CAS  Google Scholar 

  73. Marcus Y, Minevich A, Ben-Dor L (2005) Solid-liquid equilibrium diagrams of common ion binary salt hydrate mixtures involving nitrates and chlorides of magnesium, cobalt, nickel, manganese, and iron(III). Thermochim Acta 432:23–29

    Article  CAS  Google Scholar 

  74. Schmit H, Rathgeber C, Hennemann P, Hieber S (2014) Three-step method to determine the eutectic composition of binary and ternary mixtures. J Therm Anal Calorim 117:595–602

    Article  CAS  Google Scholar 

  75. Velardez GF, Alavi S, Thompson DL (2004) Molecular dynamics studies of melting and solid state transitions of ammonium nitrate. J Chem Phys 120:9159–9195

    Article  CAS  Google Scholar 

  76. Kimura H, Kai J (1988) Mixtures of calcium chloride hexahydrate with some salt hydrates or anhydrous salts as latent heat storage materials. Energy Convers Manag 28:197–200

    Article  CAS  Google Scholar 

  77. van Osch DJGP, Zubeir LF, van den Bruinhorst A, Rocha MAA, Kroon MC (2015) Hydrophobic deep eutectic solvents as water immiscible extractants. Green Chem 17:4518–4521

    Article  CAS  Google Scholar 

  78. van Osch DJGP, Parmentier D, Dietz CHJT, an den Bruinhorst A, Tuinier R, Kroon MC (2016) Removal of alkali and transition metal ions from water with hydrophobic deep eutectic solvents. Chem Comm 52:11987–11990

    Google Scholar 

  79. Florindo C, Branco LC, Marrucho IM (2017) Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. Fluid Phase Equil 448:135–142

    Article  CAS  Google Scholar 

  80. Choi YH, van Spronsen J, Dai Y, Verberne M, Hollmann F, Arends IWCE, Witkamp GJ, Verpoorte R (2011) Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol 156:1701–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dai Y, Witkamp GJ, Verpoorte R, Choi YH (2013) Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamis tinctorius L. Anal Chem 85:6272–6278

    Article  CAS  PubMed  Google Scholar 

  82. Nam MW, Zhao J, Lee MS, Jeong JH, Lee J (2015) Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: application to flavonoid extraction from Flos sophorae. Green Chem 17:1718–1727

    Article  CAS  Google Scholar 

  83. Ali MC, Yang Q, Fine AA, Jin W, Zhang Z, Xing H, Ren C (2016) Efficient removal of both basic and non-basic nitrogen compounds from fuels by deep eutectic solvents. Green Chem 18:157–164

    Article  Google Scholar 

  84. Faggian M, Sut S, Perissutti B, Baldan V, Grabnar I, Dall’Acqua S (2016) Natural deep eutectic solvents (NADES) as a tool for bioavailability improvement: pharmacokinetics of Rutin dissolved in proline/glycine after oral administration in rats: possible application in nutraceuticals. Molecules 21:1531/1–10

    Article  CAS  Google Scholar 

  85. Duan L, Dou LL, Guo L, Li P, Liu EH (2016) Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustain Chem Eng 4:2405–2411

    Article  CAS  Google Scholar 

  86. Ruesgas-Ramon M, Figueroa-Espinoza MC, Durand E (2017) Application of deep eutectic solvents (DES) for phenolic compounds extraction: overview, challenges, and opportunities. J Agricult Food Chem 65:3591–3601

    Article  CAS  Google Scholar 

  87. Ribeiro BD, Florindo C, Iff LC, Coelho MAZ, Marrucho IM (2015) Menthol-based eutectic mixtures: hydrophobic low viscosity solvents. ACS Sustain Chem Eng 3:2469–2477

    Article  CAS  Google Scholar 

  88. Duarte ARC, Ferreira ASD, Barreiros S, Cabrita E, Reis RL, Paiva A (2017) A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: solubility and permeability studies. Eur J Pharm Biopharm 114:296–304

    Article  CAS  PubMed  Google Scholar 

  89. Zhang K, Ren S, Hou Y, Wu W (2017) Efficient absorption of SO2 with low-partial pressures by environmentally benign functional deep eutectic solvents. J Hazard Mater 324:457–463

    Article  CAS  Google Scholar 

  90. Yao C, Hou Y, Ren S, Wu W, Zhang K, Ji Y, Liu H (2017) Efficient separation of phenol from model oils using environmentally benign quaternary ammonium-based zwitterions via forming deep eutectic solvents. Chem Eng J 326:620–626

    Article  CAS  Google Scholar 

  91. Zhuang B, Dou LL, Li P, Liu EH (2017) Deep eutectic solvents as green media for extraction of flavonoid glycosides and aglycones from Platycladi cacumen. J Pharmaceut Biomedical Anal 134:234–239

    Article  CAS  Google Scholar 

  92. Daneshjou S, Khodaverdian S, Dabirmanesh B, Rahimi F, Daneshjoo S, Ghazi D, Khajeh K (2017) Improvements of chondroinases ABCI stability in natural deep eutectic solvents. J Mol Liq 227:21–25

    Article  CAS  Google Scholar 

  93. Zeng CX, Qi SJ, Xin RP, Yang B, Wang YH (2016) Synergistic behavior of betaine-urea mixture: formation of deep eutectic solvent. J Mol Liq 219:74–78

    Article  CAS  Google Scholar 

  94. An J, Trujillo-Rodriguez MJ, Pino V, Anderson JL (2017) Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems. J Chromatogr A 1500:1–23

    Article  CAS  Google Scholar 

  95. Cardellini F, Germani R, Cardinali G, Corte L, Roscini L, Spreti N, Tiecco M (2015) Room temperature deep eutectic solvents of camphorsulfonic acid and sulfobetains: hydrogen bond-based mixtures with low iconicity and structure-dependent toxicity. RSC Adv 5:31772–31786

    Article  CAS  Google Scholar 

  96. Zhou E, Liu H (2014) A novel deep eutectic solvents synthesized by solid organic compounds and its application on dissolution for cellulose. Asian J Chem 26:3626–3630

    Article  CAS  Google Scholar 

  97. van Osch DJGP, Kollau LJBM, van den Bruinhorst A, Asikainen S, Rochas MAA, Kroon MC (2017) Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation. Phys Chem Chem Phys 19:2636–2665

    Article  CAS  PubMed  Google Scholar 

  98. Das A, Das S, Biswas R (2015) Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): time-resolved fluorescence measurements and all-atom molecular dynamics simulations. J Chem Phys 142:034505/1–9

    Article  CAS  PubMed  Google Scholar 

  99. Jeong KM, Lee MS, Nam MW, Zhao J, Jin Y, Lee DK, Kwon SW, Jeong JH, Lee J (2015) Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media. J Chromatogr A 1424:10–17

    Article  CAS  Google Scholar 

  100. Jeong KM, Ko J, Zhao J, Jin Y, Yoo DE, Han SY, Lee J (2017) Multi-functional deep eutectic solvents as extraction and storage media for bioactive natural products that are readily applicable to cosmetic products. J Cleaner Prod 151:87–90

    Article  CAS  Google Scholar 

  101. Li X, Row KH (2017) Application of deep eutectic solvents in hybrid molecularly imprinted polymers and mesoporous siliceous material for solid-phase extraction of levoflaxin from green bean extract. Anal Sci 33:611–617

    Article  CAS  Google Scholar 

  102. Li N, Wang Y, Xu K, Huang Y, Wen Q, Ding X (2016) Development of green betaine-based deep eutectic solvent aqueous two-phase system for extraction of protein. Talanta 152:23–32

    Article  CAS  Google Scholar 

  103. Mukherjee K, Tarif E, Barman A, Biswas R (2017) Dynamics of a PEG based non-ionic deep eutectic solvent: temperature dependence. Fluid Phase Equil 448:22–29

    Article  CAS  Google Scholar 

  104. Cui Y, Li C, Yin J, Li S, Jia Y, Bao M (2017) Design, synthesis and properties of acidic deep eutectic solvents based on choline chloride. J Mol Liq 236:338–343

    Article  CAS  Google Scholar 

  105. Mao C, Zhao R, Li X, Gao X (2017) Trifluoromethanesulfonic acid-based DESs as extractants and catalysts for removal of DBT from model oil. RSC Adv 7:12511–12805

    Article  Google Scholar 

  106. Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM (2010) Using deep eutectic solvents for the removal of glycerol from palm oil based biodiesel. J Appl Sci 10:3349–3354

    Article  CAS  Google Scholar 

  107. Li G, Deng D, Chen Y, Shan H, Ai N (2014) Solubilities and thermodynamic properties of CO2 in choline chloride based deep eutectic solvents. J Chem Thermodyn 75:58–62

    Article  CAS  Google Scholar 

  108. Abbott AP, Harris RC, Ryder KS, D’Agostino C, Gladden LF, Mantle MD (2011) Glycerol eutectics as sustainable solvent systems. Green Chm 13:82–90

    Article  CAS  Google Scholar 

  109. Chen Y, Ai N, Li G, Shan H, Cui Y, Deng D (2014) Solubility of carbon dioxide in eutectic mixtures of choline chloride and dihydric alcohols. J Chem Eng Data 59:1247–1253

    Article  CAS  Google Scholar 

  110. Liu W, Jiang W, Zhu W, Li H, Guo T, Zhu W, Li H (2016) Oxidative desulfurization of fuels promoted by choline chloride-based deep eutectic solvents. J Mol Catal A Chem 424:261–268

    Article  CAS  Google Scholar 

  111. Aroso IM, Paiva A, Reis RL, Duarte ARC (2017) Natural deep eutectic solvents from choline chloride and betaine—physicochemical properties. J Mol Liq 241:654–661

    Article  CAS  Google Scholar 

  112. Zhu J, Yu K, Zhu Y, Ye F, Song N, Xu Y (2017) Physicochemical properties of deep eutectic solvents formed by choline chloride and phenolic compounds at T = (293.15 to 333.15) K: the influence of electronic effect of substitution group. J Mol Liq 232:182–187

    Article  CAS  Google Scholar 

  113. Liu X, Gao B, Jiang Y, Ai N, Deng D (2017) Solubilities and thermodynamic properties of carbon dioxide in guaiacol-based deep eutectic solvents. J Chem Eng Data 62:1448–1455

    Article  CAS  Google Scholar 

  114. Sarmat S, Xie Y, Mikkola J-P, Ji X (2017) Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity. New J Chem 41:290–301

    Article  CAS  Google Scholar 

  115. Zhao H, Baker GA, Holmes S (2011) New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. Org Biomol Chem 9:1908–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gouveia ASL, Oliveira FS, Kurnia KA, Marrucho IM (2016) Deep eutectic solvents as azeotrope breakers: liquid-Liquid extraction and COSMO-RS prediction. ACS Sustain Chem Eng 4:5640–5650

    Article  CAS  Google Scholar 

  117. Florindo C, Oliveira MM, Branco LC, Marrucho IM (2017) Carbohydrates-based deep eutectic solvents: thermophysical properties and rice straw dissolution. J Mol Liq 247:441–447

    Article  CAS  Google Scholar 

  118. Deng D, Liu X, Gao B (2017) Physicochemical properties and investigation of azole-based deep eutectic solvents as efficient and reversible SO2 absorbents. Ind Eng Chem Res 56:13850–13856

    Article  CAS  Google Scholar 

  119. Pontes PVA, Crespo EA, Martins MAR, Silva LP, Neves CMSS, Maximo GJ, Hubinger MD, Batista EAC, Pinho SP, Coutinho JAP, Sadowski G, Held C (2017) Measurement and PC-SAFT modeling of solid-liquid equilibrium of deep eutectic solvents of quaternary ammonium chlorides and carboxylic acids. Fluid Phase Equil 448:69–80

    Article  CAS  Google Scholar 

  120. Teles ARR, Capela EV, Carmo RS, Coutinho JAP, Silvestre AJD, Freire MG (2017) Solvatochromic parameters of deep eutectic solvents formed by ammonium-based salts and carboxylic acids. Fluid Phase Equil 448:15–21

    Article  CAS  Google Scholar 

  121. Deng WW, Zong Y, Xiao YX (2017) Hexafluoroisopropanol-based deep eutectic solvent/salt aqueous two-phase systems for extraction of anthraquinones from Rhei Radix et Rhizoma samples. ACS Sustain Chem Eng 5:4267–4275

    Article  CAS  Google Scholar 

  122. Florindo C, Branco LC, Marrucho LM (2017) Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. Fluid Phase Equil 448:135–142

    Article  CAS  Google Scholar 

  123. Dietz CHJT, van Osch DJGP, Kroon MC, Sadowski G, van Sint Annaland M, Gallucci F, Zubeir LF, Held C (2017) PC-SAFT modeling of CO2 solubilities in hydrophobic deep eutectic solvents. Fluid Phase Equil 448:94–98

    Article  CAS  Google Scholar 

  124. Florindo C, McIntosh AJS, Welton T, Branco LC, Marrucho IM (2018) A closer look into deep eutectic solvents: exploring intermolecular interactions using solvatochromic probes. Phys Chem Chem Phys 20:206–213

    Article  CAS  Google Scholar 

  125. Qin L, Li J, Cheng H, Chen L, Qi Z, Yuan W (2017) Association extraction for vitamin E recovery from deodorizer distillate by in situ formation of deep eutectic solvent. AIChE J 63:2212–2220

    Article  CAS  Google Scholar 

  126. Li G, Jiang Y, Liu X, Deng D (2016) New levulinic acid-based deep eutectic solvents: synthesis and physicochemical property determination. J Mol Liq 222:201–207

    Article  CAS  Google Scholar 

  127. Hizaddin HF, Hadj-Kali MK, Ramalingam A, Hasim MA (2016) Effective denitrogenation of diesel fuel using ammonium- and phosphonium-based deep eutectic solvents. J Chem Thermodyn 95:164–175

    Article  CAS  Google Scholar 

  128. Rahma WSA, Mjalli FS, Al-Wahaibi T, Al-Hashmi AA (2017) Polymeric-based deep eutectic solvents for effective desulfurization of liquid fuel at ambient conditions. Chem Eng Res Des 120:271–283

    Article  CAS  Google Scholar 

  129. Hadj-Kali MK, Mulyono S, Hizaddin HF, Wazeer I, El-Blidi L, Ali E, Hashim MA, AlNashef IM (2016) Removal of thiophene from mixtures with n-heptane by selective extraction using deep eutectic solvents. Ind Eng Chem Res 55:8415–8423

    Article  CAS  Google Scholar 

  130. Cao J, Yang M, Cao F, Wang J, Su E (2017) Well-designed hydrophobic deep eutectic solvents as green and efficient media for extraction of artemisinin from artemisia annual leaves. ACS Sustain Chem Eng 5:3270–3278

    Article  CAS  Google Scholar 

  131. Sarmad S, Xie Y, Mikkola JP, Ji X (2017) Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity. New J Chem 42:290–321

    Article  CAS  Google Scholar 

  132. Taysun MB, Sert E, Atalat FS (2017) Effect of hydrogen bond donor on the physical properties of benzyltriethylammonium chloride based deep eutectic solvents and their use in 2-ethylhexyl acetate synthesis as a catalyst. J Chem Eng Data 62:1173–1181

    Article  CAS  Google Scholar 

  133. Wang Y, Hou Y, Wu W, Liu YJ, Rena S (2016) Roles of a hydrogen bond donor and a hydrogen bond acceptor in the extraction of toluene from n-heptane using deep eutectic solvents. Green Chem 18:3089–3097

    Article  CAS  Google Scholar 

  134. Germani R, Orlandini M, Tiecco M, Del Giaccp T (2017) Novel low viscous, green and amphiphilic N-oxide/phenylacetic acid based deep eutectic solvents. J Mol Liq 240:233–239

    Article  CAS  Google Scholar 

  135. Kareem MA, Mjalli FS, Hashim MA, Hadj-Kali MKO, Bagh FSG, AlNashef IM (2013) Phase equilibria of toluene/heptane with deep eutectic solvents based on ethyltriphenyl-phosphonium iodide for potential use in the separation of aromatics from naphtha. J Chem Thermodyn 65:138–149

    Article  CAS  Google Scholar 

  136. Zs Gano, Mjalli FS, Al-Wahaibi T, Al-Wahaibi Y, AlNashef IM (2015) Extractive desulfurization of liquid fuel with FeCl3-based deep eutectic solvents: experimental design and optimization by central-component design. Chem Eng Proc 93:10–20

    Article  CAS  Google Scholar 

  137. Ghaedi H, Ayoub M, Sufian S, Hailegiorgis SM, Murshi G, Khan SW (2018) Thermal stability analysis, experimental conductivity and pH of phosphonium-based deep eutectic solvents and their prediction by a new empirical equation. J Chem Thermodyn 116:50–60

    Article  CAS  Google Scholar 

  138. Griffin PJ, Cosby T, Holt AP, Benson RS, Sangoro JR (2014) Charge transport and structural dynamics in carboxylic acid based deep eutectic mixtures. J Phys Chem B 118:9378–9385

    Article  CAS  PubMed  Google Scholar 

  139. Yang D, Han Y, Qi H, Wang Y, Dai S (2017) Efficient absorption of SO2 by EmimCl-EG deep eutectic solvent. ACS Sustain Chem Eng 5:6382–6386

    Article  CAS  Google Scholar 

  140. Kaur S, Gupta A, Kashyap HK (2016) Nanoscale spatial heterogeneity in deep eutectic solvents. J Phys Chem B 120:6712–6720

    Article  CAS  PubMed  Google Scholar 

  141. Boisset A, Menne S, Jacquemin J, Balducci A, Anouti M (2013) Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Phys Chem Chem Phys 15:20054–20063

    Article  CAS  PubMed  Google Scholar 

  142. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082

    Article  CAS  PubMed  Google Scholar 

  143. Juneidi I, Hayyan M, Hashim MA (2015) Evaluation of toxicity and biodegradability for cholinium based deep eutectic solvents. RSC Adv 5:83636–83647

    Article  CAS  Google Scholar 

  144. Domanska U, Okuniewska P, Markowska A (2016) Phase equilibria in binary systems of ionic liquids or deep eutectic solvents with 2-phenylethanol or water. Fluid Phase Equil 424:68–78

    Article  CAS  Google Scholar 

  145. Francisco M, van den Bruinhorst A, Kroon MC (2013) Low transition temperature mixtures (LTTMs): a new generation of designer solvents. Angew Chem Int Ed 52:3074–3085

    Article  CAS  Google Scholar 

  146. Avd Bruinhorst, Spiriouni T, Hill JR, Kroon MC (2018) Experimental and molecular modeling evaluation of the physicochemical properties of proline-based deep eutectic solvents. J Phys Chem B 122:369–379

    Article  CAS  Google Scholar 

  147. Dietz CHJT, Kroon MC, Annaland MVS, Gallucci F (2017) Thermophysical properties and solubility of different sugar-derived molecules in deep eutectic solvents. J Chem Eng Data 62:3633–3641

    Article  CAS  Google Scholar 

  148. Craveiro R, Aroso I, Flammia V, Carvalho T, Viciosa MT, Dionisio M, Barreiros S, Reis RL, Duarte ARC, Paiva A (2016) Properties and thermal behavior of natural deep eutectic solvents. J Mol Liq 215:534–540

    Article  CAS  Google Scholar 

  149. Florindo C, Romero L, Rintoul O, Branco LC, Marrucho IM (2018) From phase change materials to green solvents: hydrophobic low viscous fatty acid-based deep eutectic solvents. ACS Sustain Chem Eng 6:888–3895

    Article  CAS  Google Scholar 

  150. Ghaedi H, Ayoub M, Sufian S, Shariff AM, Lal B, Wilfred CD (2017) Density and refractive index measurements of transition temperature mixture (deep eutectic analogies) based on potassium carbonate with dual hydrogen bond donors for CO2 capture. J Chem Thermodyn 118:147–158

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhak Marcus .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marcus, Y. (2019). The Variety of Deep Eutectic Solvents. In: Deep Eutectic Solvents. Springer, Cham. https://doi.org/10.1007/978-3-030-00608-2_2

Download citation

Publish with us

Policies and ethics