Skip to main content

Real-Time Drone Detection Using Deep Learning Approach

  • Conference paper
  • First Online:
Machine Learning and Intelligent Communications (MLICOM 2018)

Abstract

The arbitrary use of drones poses great threat to public safety and personal privacy. It is necessary to detect the intruding drones in sensitive areas in real time. In this paper, we design a real-time drone detector using deep learning approach. Specifically, we improve a well-performed deep learning model, i.e., You Only Look Once, by modifying its structure and tuning its parameters to better accommodate drone detection. Considering that a robust detector needs to be trained using a large amount of training images, we also propose a semi-automatically dataset labelling method based on Kernelized Correlation Filters tracker to speed up the pre-processing of the training images. At last, the performance of our detector is verified via extensive experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wargo, C., Snipes, C., Roy, A., Kerczewski, R.: UAS industry growth: forecasting impact on regional infrastructure, environment, and economy. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), pp. 1–5. IEEE (2016)

    Google Scholar 

  2. Chang, X., Yang, C., Wu, J., Shi, X., Shi, Z.: A surveillance system for drone localization and tracking using acoustic arrays. In: 2018 IEEE 87th Vehicular Technology Conference (2018)

    Google Scholar 

  3. Chang, X., Yang, C., Shi, X., Li, P., Shi, Z., Chen, J.: Feature extracted DOA estimation algorithm using acoustic array for drone surveillance. In: 2018 10th IEEE Sensor Array and Multichannel Signal Processing Workshop (2018)

    Google Scholar 

  4. Yang, C., Wu, Z., Chang, X., Shi, X., Wo, J., Shi, Z.: DOA estimation using amateur drones harmonic acoustic signals. In: 2018 10th IEEE Sensor Array and Multichannel Signal Processing Workshop (2018)

    Google Scholar 

  5. Shi, X., Yang, C., Xie, W., Liang, C., Shi, Z., Chen, J.: Anti-drone system with multiple surveillance technologies: architecture, implementation, and challenges. IEEE Commun. Mag. 56(4), 68–74 (2017)

    Article  Google Scholar 

  6. Chen, J., Kang, H., Wang, Q., Sun, Y., Shi, Z., He, S.: Narrowband internet of things: implementations and applications. IEEE Internet Things J. 4(6), 2309–2314 (2017)

    Article  Google Scholar 

  7. Sevil, H.E., Dogan, A., Subbarao, K., Huff, B.: Evaluation of extant computer vision techniques for detecting intruder sUAS. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 929–938. IEEE (2017)

    Google Scholar 

  8. Hwang, S., Lee, J., Shin, H., Cho, S., Shim, D.H.: Aircraft detection using deep convolutional neural network in small unmanned aircraft systems. In: 2018 AIAA Information Systems-AIAA Infotech@ Aerospace, p. 2137 (2018)

    Google Scholar 

  9. Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture measures with classification based on kullback discrimination of distributions. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, 1994. Vol. 1-Conference A: Computer Vision & Image Processing, vol. 1, pp. 582–585. IEEE (1994)

    Google Scholar 

  10. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  MathSciNet  Google Scholar 

  11. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. 1, pp. 886–893. IEEE Computer Society (2005)

    Google Scholar 

  12. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.J.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1106–1114 (2012)

    Google Scholar 

  14. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp. 580–587. IEEE Computer Society (2014)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_23

    Chapter  Google Scholar 

  16. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99 (2015)

    Google Scholar 

  17. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR, pp. 779–788. IEEE Computer Society (2016)

    Google Scholar 

  18. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)

    Article  Google Scholar 

  19. Usc drone dataset. https://chelicynly.github.io/Drone-Project/

  20. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: CVPR, pp. 6517–6525. IEEE Computer Society (2017)

    Google Scholar 

  21. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: SODA, pp. 1027–1035. SIAM (2007)

    Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC under Grant 61772467, Zhejiang Provincial Natural Science Foundation of China under Grant LR16F010002, 973 Project under Grant 2015CB352503, the Fundamental Research Funds for the Central Universities (2017XZZX009-01), and China Postdoctoral Science Foundation funded project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjia Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, M., Xie, W., Shi, X., Shao, P., Shi, Z. (2018). Real-Time Drone Detection Using Deep Learning Approach. In: Meng, L., Zhang, Y. (eds) Machine Learning and Intelligent Communications. MLICOM 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 251. Springer, Cham. https://doi.org/10.1007/978-3-030-00557-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00557-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00556-6

  • Online ISBN: 978-3-030-00557-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics