Skip to main content

When Diffraction Stops and Destruction Begins

  • Chapter
  • First Online:
X-ray Free Electron Lasers

Abstract

It is now possible to solve protein structures with femtosecond X-ray free-electron laser (XFEL) pulses that were previously inaccessible to continuous synchrotron sources due to radiation damage. The key to this success is that diffraction probes the protein structure on femtosecond timescales, whereas nuclear motion takes tens to hundreds of femtoseconds to have a significant effect on the crystal structure. This is the essential idea behind the diffraction-before-destruction principle that underlies serial femtosecond crystallography (SFX) with XFELs. In practice, the principle works well enough to determine protein structures of comparable resolution to synchrotron protein crystallography, which has led to the many successes of XFEL crystallography to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A., Aquila, A., et al. (2011). Femtosecond X-ray protein nanocrystallography. Nature, 470, 73–77.

    Article  CAS  Google Scholar 

  2. Boutet, S., Lomb, L., Williams, G. J., Barends, T. R. M., Aquila, A., Doak, R. B., et al. (2012). High-resolution protein structure determination by serial femtosecond crystallography. Science, 337, 362–364.

    Article  CAS  Google Scholar 

  3. Barty, A., Caleman, C., Aquila, A., Timneanu, N., Lomb, L., White, T. A., et al. (2012). Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nature Photonics, 6, 35–40.

    Article  CAS  Google Scholar 

  4. Galli, L., Son, S.-K., Klinge, M., Bajt, S., Barty, A., Bean, R., et al. (2015). Electronic damage in S atoms in a native protein crystal induced by an intense X-ray free-electron laser pulse. Structure & Dynamics, 2, 041703.

    Article  CAS  Google Scholar 

  5. Nass, K., Foucar, L., Barends, T. R. M., Hartmann, E., Botha, S., Shoeman, R. L., et al. (2015). Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams. Journal of Synchrotron Radiation, 22, 225–238.

    Article  CAS  Google Scholar 

  6. Son, S.-K., Chapman, H. N., & Santra, R. (2011). Multiwavelength anomalous diffraction at high X-ray intensity. Physical Review Letters, 107, 218102.

    Article  Google Scholar 

  7. Martin, A. V., & Quiney, H. M. (2016). Coherence loss by sample dynamics and heterogeneity in X-ray laser diffraction. Journal of Physics B: Atomic, Molecular and Optical Physics, 49, 244001.

    Article  Google Scholar 

  8. Abbey, B., Dilanian, R. A., Darmanin, C., Ryan, R. A., Putkunz, C. T., Martin, A. V., et al. (2016). X-ray laser-induced electron dynamics observed by femtosecond diffraction from nanocrystals of buckminsterfullerene. Science Advances, 2, e1601186.

    Article  Google Scholar 

  9. Ferguson, K. R., Bucher, M., Gorkhover, T., Boutet, S., Fukuzawa, H., Koglin, J. E., et al. (2016). Transient lattice contraction in the solid-to-plasma transition. Science Advances, 2(1), e1500837.

    Article  Google Scholar 

  10. Owen, R. L., Rudiño-Piñera, E., & Garman, E. F. (2006). Experimental determination of the radiation dose limit for cryocooled protein crystals. Proceedings of the National Academy of Sciences of the United States of America, 103, 4912–4917.

    Article  CAS  Google Scholar 

  11. Chapman, H. N., Caleman, C., & Timneanu, N. (2014). Diffraction before destruction. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130313.

    Article  Google Scholar 

  12. Auger, P., Ehrenfest, R., Maze, R., Daudin, J. & Fréon, R. A. (1939). Extensive Cosmic-Ray showers. Reviews of Modern Physics, 11, 288–291.

    Article  CAS  Google Scholar 

  13. X-ray data booklet. revision. Technical report, 1986.

    Google Scholar 

  14. Hubbell, J. H., Veigele, W. J., Briggs, E. A., Brown, R. T., Cromer, D. T., & Howerton, R. J. (1975). Atomic form factors, incoherent scattering functions, and photon scattering cross sections. Journal of Physical and Chemical Reference Data, 4, 471–538.

    Article  CAS  Google Scholar 

  15. Krause, M. O., & Oliver, J. H. (1979). Natural widths of atomic K and L levels, Kα X-ray lines and several KLL auger lines. Journal of Physical and Chemical Reference Data, 8, 329–338.

    Article  CAS  Google Scholar 

  16. Siegbahn, K. (1970). ESCA applied to free molecules. Amsterdam: North-Holland.

    Google Scholar 

  17. Persson, P., Lunell, S., Szöke, A., Ziaja, B., & Hajdu, J. (2001). Shake-up and shake-off excitations with associated electron losses in X-ray studies of proteins. Protein Science, 10, 2480–2484.

    Article  CAS  Google Scholar 

  18. Caleman, C. (2007). Towards Single Molecule Imaging - Understanding Structural Transitions Using Ultrafast X-Ray Sources and Computer Simulations. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology.

    Google Scholar 

  19. Ziaja, B., London, R. A., & Hajdu, J. (2005). Unified model of secondary electron cascades in diamond. Journal of Applied Physics, 97, 064905.

    Article  Google Scholar 

  20. Landau, L. D., & Lifshitz, E. M. (1981). Quantum mechanics: Non-relativistic theory. Amsterdam: Elsevier.

    Google Scholar 

  21. Caleman, C., Ortiz, C., Marklund, E., Bultmark, F., Gabrysch, M., Parak, F. G., et al. (2009). Radiation damage in biological material: Electronic properties and electron impact ionization in urea. Europhysics Letters, 85, 18005.

    Article  Google Scholar 

  22. Caleman, C., Huldt, G., Maia, F. R. N. C., Ortiz, C., Parak, F. G., Hajdu, J., et al. (2011). On the feasibility of nanocrystal imaging using intense and ultrashort X-ray pulses. ACS Nano, 5, 139–146.

    Article  CAS  Google Scholar 

  23. Young, L., Kanter, E. P., Krässig, B., Li, Y., March, A. M., Pratt, S. T., et al. (2010). Femtosecond electronic response of atoms to ultra-intense X-rays. Nature, 466, 56–61.

    Article  CAS  Google Scholar 

  24. Caleman, C., Bergh, M., Scott, H. A., Spence, J. C. H., Chapman, H. N., & Tîmneanu, N. (2011). Simulations of radiation damage in biomolecular nanocrystals induced by femtosecond X-ray pulses. Journal of Modern Optics, 58, 1486–1497.

    Article  CAS  Google Scholar 

  25. Caleman, C., Tîmneanu, N., Martin, A. V., Jönsson, H. O., Aquila, A., Barty, A., et al. (2015). Ultrafast self-gating Bragg diffraction of exploding nanocrystals in an X-ray laser. Optics Express, 23, 1213–1231.

    Article  Google Scholar 

  26. Scott, H. A. (2001). Cretin—A radiative transfer capability for laboratory plasmas. Journal of Quantitative Spectroscopy and Radiation Transfer, 71, 689–701.

    Article  CAS  Google Scholar 

  27. Book, D. L., & Naval Research Laboratory (U.S.). (1987). NRL plasma formulary.

    Google Scholar 

  28. Gericke, D. O., Murillo, M. S., & Schlanges, M. (2002). Dense plasma temperature equilibration in the binary collision approximation. Physical Review E, 65, 036418.

    Article  CAS  Google Scholar 

  29. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E., & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406, 752–757.

    Article  CAS  Google Scholar 

  30. Hau-Riege, S. P., London, R. A., & Szoke, A. (2004). Dynamics of biological molecules irradiated by short X-ray pulses. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 69, 051906.

    Article  Google Scholar 

  31. Bergh, M., Tîmneanu, N., & van der Spoel, D. (2004). Model for the dynamics of a water cluster in an X-ray free electron laser beam. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 70, 051904.

    Article  Google Scholar 

  32. Jurek, Z., Oszlányi, G., & Faigel, G. (2004). Imaging atom clusters by hard X-ray free-electron lasers. Europhysics Letters, 65, 491–497.

    Article  CAS  Google Scholar 

  33. Krejcik, P., Decker, F.-J., Emma, P., Hacker, K., Hendrickson, L., O’Connell, C. L., et al. (2003). Commissioning of the SPPS linac bunch compressor. In: Proceedings of the 2003 particle accelerator conference.

    Google Scholar 

  34. Lindenberg, A. M., Larsson, J., Sokolowski-Tinten, K., Gaffney, K. J., Blome, C., Synnergren, O., et al. (2005). Atomic-scale visualization of inertial dynamics. Science, 308(5720), 392–395.

    Article  CAS  Google Scholar 

  35. Graziani, F. R., Batista, V. S., Benedict, L. X., Castor, J. I., Chen, H., Chen, S. N., et al. (2012). Large-scale molecular dynamics simulations of dense plasmas: The Cimarron Project. High Energy Density Physics, 8, 105–131.

    Article  CAS  Google Scholar 

  36. Hau-Riege, S. P., & Bennion, B. J. (2015). Reproducible radiation-damage processes in proteins irradiated by intense X-ray pulses. Physical Review E, 91, 022705.

    Article  Google Scholar 

  37. Jurek, Z., Son, S.-K., Ziaja, B., & Santra, R. (2016). XMDYN and XATOM: Versatile simulation tools for quantitative modeling of X-ray free-electron laser induced dynamics of matter. Journal of Applied Crystallography, 49, 1048–1056.

    Article  CAS  Google Scholar 

  38. Son, S.-K., Young, L., & Santra, R. (2011). Impact of hollow-atom formation on coherent X-ray scattering at high intensity. Physical Review A, 83, 033402.

    Article  Google Scholar 

  39. Jönsson, H. O., Tîmneanu, N., Östlin, C., Scott, H. A., & Caleman, C. (2015). Simulations of radiation damage as a function of the temporal pulse profile in femtosecond X-ray protein crystallography. Journal of Synchrotron Radiation, 22, 256–266.

    Article  Google Scholar 

  40. Waasmaier, D., & Kirfel, A. (1995). New analytical scattering-factor functions for free atoms and ions. Acta Crystallographica. Section A, 51, 416–431.

    Google Scholar 

  41. Slater, J. C. (1930). Atomic shielding constants. Physical Review, 36, 57–64.

    Article  CAS  Google Scholar 

  42. Quiney, H. M., & Nugent, K. A. (2011). Biomolecular imaging and electronic damage using X-ray free-electron lasers. Nature Physics, 7, 142–146.

    Article  CAS  Google Scholar 

  43. Lomb, L., Barends, T. R. M., Kassemeyer, S., Aquila, A., Epp, S. W., Erk, B., et al. (2011). Radiation damage in protein serial femtosecond crystallography using an X-ray free-electron laser. Physical Review B: Condensed Matter and Materials Physics, 84, 214111.

    Article  Google Scholar 

  44. Barends, T. R. M., Foucar, L., Botha, S., Doak, R. B., Shoeman, R. L., Nass, K., et al. (2014). De novo protein crystal structure determination from X-ray free-electron laser data. Nature, 505, 244–247.

    Article  CAS  Google Scholar 

  45. Galli, L., Barends, T. R. M., Son, S.-K., White, T. A., Barty, A., Botha, S., et al. (2015). Crystal structure of gadolinium derivative of HEWL solved using Free-Electron laser radiation. IUCrJ, 2, 627–634.

    Article  CAS  Google Scholar 

  46. Nakane, T., Song, C., Suzuki, M., Nango, E., Kobayashi, J., Masuda, T., et al. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography. Acta Crystallographica. Section D, Biological Crystallography, 71, 2519–2525 (2015)

    Article  CAS  Google Scholar 

  47. Nass, K., Meinhart, A., Barends, T. R. M., Foucar, L., Gorel, A., Aquila, A., et al. (2016). Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCrJ, 3, 180–191.

    Article  CAS  Google Scholar 

  48. Hunter, M. S., Yoon, C. H., DeMirci, H., Sierra, R. G., Dao, E. H., Ahmadi, R., et al. (2016). Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser. Nature Communications, 7, 13388.

    Article  CAS  Google Scholar 

  49. Bortel, G., Faigel, G., & Tegze, M. (2009). Classification and averaging of random orientation single macromolecular diffraction patterns at atomic resolution. Journal of Structural Biology, 166, 226–233.

    Article  CAS  Google Scholar 

  50. Aquila, A., Barty, A., Bostedt, C., Boutet, S., Carini, G., dePonte, D., et al. (2015). The linac coherent light source single particle imaging road map. Structural Dynamics, 2(4), 041701.

    Article  CAS  Google Scholar 

  51. Ekeberg, T., Svenda, M., Abergel, C., Maia, F. R. N. C., Seltzer, V., Claverie, J.-M., et al. (2015, March). Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser. Physical Review Letters, 114, 098102.

    Article  Google Scholar 

  52. Martin, A. V., Corso, J. K., Caleman, C., Timneanu, N., & Quiney, H. M. (2015). Single-molecule imaging with longer X-ray laser pulses. IUCrJ, 2, 661–674.

    Article  CAS  Google Scholar 

  53. Hau-Riege, S., London, R., Huldt, G., & Chapman, H. (2005). Pulse requirements for X-ray diffraction imaging of single biological molecules. Physical Review E, 71, 061919.

    Article  Google Scholar 

  54. Hau-Riege, S. P., London, R. A., Chapman, H. N., Szoke, A., & Timneanu, N. (2007). Encapsulation and diffraction-pattern-correction methods to reduce the effect of damage in X-ray diffraction imaging of single biological molecules. Physical Review Letters, 98, 198302.

    Article  Google Scholar 

  55. Hau-Riege, S. P., Boutet, S., Barty, A., Bajt, S., Bogan, M. J., Frank, M., et al. (2010). Sacrificial tamper slows down sample explosion in flash diffraction experiments. Physical Review Letters, 104, 064801.

    Article  Google Scholar 

  56. Lorenz, U., Kabachnik, N. M., Weckert, E.., & Vartanyants, I. A. (2012). Impact of ultrafast electronic damage in single-particle X-ray imaging experiments. Physical Review B, 86, 051911.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Caleman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caleman, C., Martin, A.V. (2018). When Diffraction Stops and Destruction Begins. In: Boutet, S., Fromme, P., Hunter, M. (eds) X-ray Free Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-030-00551-1_6

Download citation

Publish with us

Policies and ethics