Skip to main content

Sample Delivery Techniques for Serial Crystallography

  • Chapter
  • First Online:

Abstract

In serial femtosecond crystallography (SFX), protein microcrystals and nanocrystals are introduced into the focus of an X-ray free electron laser (FEL) beam ideally one-by-one in a serial fashion. The high photon density in each pulse is the double-edged sword that necessitates the serial nature of the experiments. The high photon count focused spatially and temporally leads to a diffraction-before-destruction snapshot, but this single snapshot is not enough for a high-resolution three-dimensional structural reconstruction. To recover the structure, more snapshots are required to sample all of reciprocal space from randomly oriented crystal diffraction, and in practice, some redundancy is necessary in these measurements. This chapter explores the different sample delivery techniques developed over the years to help enable serial crystallography experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chapman, H. N., Barty, A., Bogan, M. J., Boutet, S., Frank, M., Hau-Riege, S. P., et al. (2006). Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Physics, 2(12), 839–843. https://doi.org/10.1038/nphys461.

    Article  CAS  Google Scholar 

  2. Stan, C. A., Milathianaki, D., Laksmono, H., Sierra, R. G., McQueen, T. A., Messerschmidt, M., et al. (2016). Liquid explosions induced by X-ray laser pulses. Nature Physics, 12, 966. https://doi.org/10.1038/nphys3779.

    Article  CAS  Google Scholar 

  3. Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A., Aquila, A., et al. (2011). Femtosecond X-ray protein nanocrystallography. Nature, 470(7332), 73–77. https://doi.org/10.1038/nature09750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Seibert, M. M., Ekeberg, T., Maia, F. R. N. C., Svenda, M., Andreasson, J., Jönsson, O., et al. (2011). Single mimivirus particles intercepted and imaged with an X-ray laser. Nature, 470(7332), 78–81. https://doi.org/10.1038/nature09748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bogan, M. J., Benner, W. H., Boutet, S., Rohner, U., Frank, M., Barty, A., et al. (2008). Single particle X-ray diffractive imaging. Nano Letters, 8(1), 310–316. https://doi.org/10.1021/nl072728k.

    Article  CAS  PubMed  Google Scholar 

  6. Awel, S., Kirian, R. A., Wiedorn, M. O., Beyerlein, K. R., Roth, N., Horke, D. A., et al. (2018). Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals. Journal of Applied Crystallography, 51(1), 133–139. https://doi.org/10.1107/S1600576717018131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hantke, M. F., Hasse, D., Maia, F. R. N. C., Ekeberg, T., John, K., Svenda, M., et al. (2014). High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nature Photonics, 8(12), 943–949. https://doi.org/10.1038/nphoton.2014.270.

    Article  CAS  Google Scholar 

  8. Munke, A., Andreasson, J., Aquila, A., Awel, S., Ayyer, K., Barty, A., et al. (2016). Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source. Scientific Data, 3, 160064. https://doi.org/10.1038/sdata.2016.64.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rayleigh, L. (1878). On the instability of jets. Proceedings of the London Mathematical Society, 1(1), 4 Retrieved from http://plms.oxfordjournals.org/content/s1-10/1/4.full.pdf.

    Article  Google Scholar 

  10. Rayleigh, L. (1892). XVI. On the instability of a cylinder of viscous liquid under capillary force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(207), 145–154. https://doi.org/10.1080/14786449208620301.

    Article  Google Scholar 

  11. Faubel, M., Schlemmer, S., & Toennies, J. (1988). A molecular beam study of the evaporation of water from a liquid jet. Zeitschrift fur Physik D: Atoms, Molecules and Clusters, 10(2), 269–277 Retrieved from http://www.springerlink.com/index/X6GXW8Q11QV3R085.pdf.

    Article  CAS  Google Scholar 

  12. Weierstall, U., Doak, R., Spence, J. C. H., Starodub, D., Shapiro, D., Kennedy, P., et al. (2008). Droplet streams for serial crystallography of proteins. Experiments in Fluids, 44(5), 675–689 Retrieved from http://www.springerlink.com/index/Q7N2L3278806078U.pdf.

    Article  CAS  Google Scholar 

  13. DePonte, D. P., Weierstall, U., Schmidt, K., Warner, J., Starodub, D., Spence, J. C. H., et al. (2008). Gas dynamic virtual nozzle for generation of microscopic droplet streams. Journal of Physics D: Applied Physics, 41(19), 195505. https://doi.org/10.1088/0022-3727/41/19/195505.

    Article  CAS  Google Scholar 

  14. White, F., & Corfield, I. (2005). Viscous fluid flow (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  15. Eggers, J., & Villermaux, E. (2008). Physics of liquid jets. Reports on Progress in Physics, 71(1), 1–79. https://doi.org/10.1088/0034-4885/71/3/036601.

    Article  Google Scholar 

  16. Gonzalez-Tello, P., Camacho, F., & Blazquez, G. (1994). Density and viscosity of concentrated aqueous solutions of polyethylene glycol. Journal of Chemical & Engineering Data, 39(3), 611–614. https://doi.org/10.1021/je00015a050.

    Article  CAS  Google Scholar 

  17. Lee, R. J., & Teja, A. S. (1990). Viscosities of poly(ethylene glycols). Journal of Chemical & Engineering Data, 35(4), 385–387. https://doi.org/10.1021/je00062a003.

    Article  CAS  Google Scholar 

  18. Einstein, A. (1905). On the motion of small particles suspended in a stationary liquid, as required by the molecular kinetic theory of heat. Annalen der Physik, 322, 549–560. https://doi.org/10.1002/andp.19053220806.

    Article  Google Scholar 

  19. Probstein, R. F. (1994). Physicochemical hydrodynamics. New York: Wiley. https://doi.org/10.1002/0471725137.

    Book  Google Scholar 

  20. Lomb, L., Steinbrener, J., Bari, S., Beisel, D., Berndt, D., Kieser, C., et al. (2012). An anti-settling sample delivery instrument for serial femtosecond crystallography. Journal of Applied Crystallography, 45(4), 1–5. https://doi.org/10.1107/S0021889812024557.

    Article  CAS  Google Scholar 

  21. Sierra, R. G., Gati, C., Laksmono, H., Dao, E. H., Gul, S., Fuller, F., et al. (2015). Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II. Nature Methods, 13(1), 59–62. https://doi.org/10.1038/nmeth.3667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Johansson, L. C., Arnlund, D., White, T. A., Katona, G., Deponte, D. P., Weierstall, U., et al. (2012). Lipidic phase membrane protein serial femtosecond crystallography. Nature Methods, 9(3), 263–265. https://doi.org/10.1038/nmeth.1867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oberthuer, D., Knoška, J., Wiedorn, M. O., Beyerlein, K. R., Bushnell, D. A., Kovaleva, E. G., et al. (2017). Double-flow focused liquid injector for efficient serial femtosecond crystallography. Scientific Reports, 7, 44628. https://doi.org/10.1038/srep44628.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Taylor, G. (1953). Dispersion of soluble matter in solvent flowing slowly through a tube. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 219(1137), 186–203. https://doi.org/10.1098/rspa.1953.0139.

    Article  CAS  Google Scholar 

  25. Taneda, S. (1979). Visualization of separating Stokes flows. Journal of the Physical Society of Japan, 46(6), 1935–1942. https://doi.org/10.1143/JPSJ.46.1935.

    Article  Google Scholar 

  26. Purcell, E. (1976). Life at low Reynolds number. AIP Conference Proceedings, 45, 3–11.

    Google Scholar 

  27. Rayleigh, L. (1879). On the capillary phenomena of jets. Proceedings of the Royal Society of London, 29, 71–97.

    Article  Google Scholar 

  28. Frohn, A., & Roth, N. (2000). Dynamics of droplets. Berlin, Germany: Springer Science & Business Media.

    Book  Google Scholar 

  29. Gañán-Calvo, A. M. (1998). Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Physical Review Letters, 80(2), 285.

    Article  Google Scholar 

  30. Lomb, L., Steinbrener, J., Bari, S., Beisel, D., Berndt, D., Kieser, C., et al. (2012). An anti-settling sample delivery instrument for serial femtosecond crystallography. Journal of Applied Crystallography, 45(4), 674–678.

    Article  CAS  Google Scholar 

  31. Weierstall, U., Spence, J. C. H., & Doak, R. B. (2012). Injector for scattering measurements on fully solvated biospecies. The Review of Scientific Instruments, 83(3), 035108.

    Article  CAS  PubMed  Google Scholar 

  32. Nelson, G., Kirian, R. A., Weierstall, U., Zatsepin, N. A., Faragó, T., Baumbach, T., et al. (2016). Three-dimensional-printed gas dynamic virtual nozzles for x-ray laser sample delivery. Optics Express, 24(11), 11515–11530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, D., Weierstall, U., Pollack, L., & Spence, J. (2014). Double-focusing mixing jet for XFEL study of chemical kinetics. Journal of Synchrotron Radiation, 21(6), 1364–1366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weierstall, U., Doak, R. B., & Spence, J. C. H. (2011). A pump-probe XFEL particle injector for hydrated samples. arXiv preprint arXiv:1105.2104.

    Google Scholar 

  35. Daurer, B. J., Okamoto, K., Bielecki, J., Maia, F. R. N. C., Muhlig, K., Seibert, M. M., et al. (2017). Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses. IUCrJ, 4(3), 251–262. https://doi.org/10.1107/S2052252517003591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Perry, S. L., Guha, S., Pawate, A. S., Bhaskarla, A., Agarwal, V., Nair, S. K., et al. (2013). A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction. Lab on a Chip, 13(16), 3183–3187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhu, L., Weierstall, U., Cherezov, V., & Liu, W. (2016). Serial femtosecond crystallography of membrane proteins. In I. Moraes (Ed.), The next generation in membrane protein structure determination (pp. 151–160). Cham, Switzerland: Springer.

    Chapter  Google Scholar 

  38. Martin-Garcia, J. M., Conrad, C. E., Nelson, G., Stander, N., Zatsepin, N. A., Zook, J., et al. (2017). Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation. IUCrJ, 4, 439–454. https://doi.org/10.1107/S205225251700570X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tono, K., Nango, E., Sugahara, M., Song, C., Park, J., Tanaka, T., et al. (2015). Diverse application platform for hard X-ray diffraction in SACLA (DAPHNIS): Application to serial protein crystallography using an X-ray free-electron laser. Journal of Synchrotron Radiation, 22, 532–537. https://doi.org/10.1107/S1600577515004464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sugahara, M., Mizohata, E., Nango, E., Suzuki, M., Tanaka, T., Masuda, T., et al. (2015). Grease matrix as a versatile carrier of proteins for serial crystallography. Nature Methods, 12(1), 61–63.

    Article  CAS  PubMed  Google Scholar 

  41. Botha, S., Nass, K., Barends, T. R. M., Kabsch, W., Latz, B., Dworkowski, F., et al. (2015). Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams. Acta Crystallographica. Section D, Biological Crystallography, 71(2), 387.

    Article  CAS  PubMed  Google Scholar 

  42. Conrad, C. E., Basu, S., James, D., Wang, D., Schaffer, A., Roy-Chowdhury, S., et al. (2015). A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ, 2(4), 421–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sugahara, M., Song, C., Suzuki, M., Masuda, T., Inoue, S., Nakane, T., et al. (2016). Oil-free hyaluronic acid matrix for serial femtosecond crystallography. Scientific Reports, 6, 1–6.

    Article  CAS  Google Scholar 

  44. Kovacsova, G., Grunbein, M. L., Kloos, M., Barends, T. R. M., Schlesinger, R., Heberle, J., et al. (2017). Viscous hydrophilic injection matrices for serial crystallography. IUCrJ, 4, 400–410. https://doi.org/10.1107/S2052252517005140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weierstall, U., James, D., Wang, C., White, T. A., Wang, D., Liu, W., et al. (2014). Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nature Communications, 5, 3309.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang, H., Unal, H., Gati, C., Han, G. W., Liu, W., Zatsepin, N. A., et al. (2015). Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell, 161(4), 833–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fenalti, G., Zatsepin, N. A., Betti, C., Giguere, P., Han, G. W., Ishchenko, A., et al. (2015). Structural basis for bifunctional peptide recognition at human delta-opioid receptor. Nature Structural & Molecular Biology, 22(3), 265–268.

    Article  CAS  Google Scholar 

  48. Kang, Y., Zhou, X. E., Gao, X., He, Y., Liu, W., Ishchenko, A., et al. (2015). Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 523(7562), 561–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nogly, P., Panneels, V., Nelson, G., Gati, C., Kimura, T., Milne, C., et al. (2016). Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography. Nature Communications, 7, 1–9.

    Article  CAS  Google Scholar 

  50. Batyuk, A., Galli, L., Ishchenko, A., Han, G. W., Gati, C., Popov, P. A., et al. (2016). Native phasing of x-ray free-electron laser data for a G protein–coupled receptor. Science Advances, 2(9), e1600292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Fromme, R., Ishchenko, A., Metz, M., Chowdhury, S. R., Basu, S., Boutet, S., et al. (2015). Serial femtosecond crystallography of soluble proteins in lipidic cubic phase. IUCrJ, 2(5), 545–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. James, D., Wang, D., White, T. A., Zatsepin, N., Nelson, G., Liu, H., et al. (2015). Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ, 2(2), 168–176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Sierra, R. G., Laksmono, H., Kern, J., Tran, R., Hattne, J., Alonso-Mori, R., et al. (2012). Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallographica. Section D, Biological Crystallography, 68(11), 1584–1587. https://doi.org/10.1107/S0907444912038152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hattne, J., Echols, N., Tran, R., Kern, J., Gildea, R. J., Brewster, A. S., et al. (2014). Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers. Nature Methods, 11(5), 545–548. https://doi.org/10.1038/nmeth.2887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kern, J., Alonso-Mori, R., Hellmich, J., Tran, R., Hattne, J., Laksmono, H., et al. (2012). Room temperature femtosecond X-ray diffraction of photosystem II microcrystals. Proceedings of the National Academy of Sciences of the United States of America, 109(25), 9721–9726. https://doi.org/10.1073/pnas.1204598109.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kern, J., Tran, R., Alonso-Mori, R., Koroidov, S., Echols, N., Hattne, J., et al. (2014). Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nature Communications, 5, 4371. https://doi.org/10.1038/ncomms5371.

    Article  CAS  PubMed  Google Scholar 

  57. Young, I. D., Ibrahim, M., Chatterjee, R., Gul, S., Fuller, F. D., Koroidov, S., et al. (2016). Structure of photosystem II and substrate binding at room temperature. Nature, 540(7633), 453–457. https://doi.org/10.1038/nature20161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alonso-Mori, R., Kern, J., Gildea, R. J., Sokaras, D., Weng, T.-C., Lassalle-Kaiser, B., et al. (2012). Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode. Proceedings of the National Academy of Sciences of the United States of America, 109(47), 19103. https://doi.org/10.1073/pnas.1211384109.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kern, J., Alonso-Mori, R., Tran, R., Hattne, J., Gildea, R. J., Echols, N., et al. (2013). Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science, 340(6131), 491–495. https://doi.org/10.1126/science.1234273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kroll, T., Kern, J., Kubin, M., Ratner, D., Gul, S., Fuller, F. D., et al. (2016). X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser. Optics Express, 24(20), 22469. https://doi.org/10.1364/OE.24.022469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kubin, M., Kern, J., Gul, S., Kroll, T., Chatterjee, R., Löchel, H., et al. (2017). Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers. Structural Dynamics, 4(5), 054307. https://doi.org/10.1063/1.4986627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mitzner, R., Rehanek, J., Kern, J., Gul, S., Hattne, J., Taguchi, T., et al. (2013). L-edge X-ray absorption spectroscopy of dilute systems relevant to metalloproteins using an X-ray free-electron laser. Journal of Physical Chemistry Letters, 4, 3641–3647. https://doi.org/10.1021/jz401837f.

    Article  CAS  Google Scholar 

  63. Colletier, J.-P., Sawaya, M. R., Gingery, M., Rodriguez, J. A., Cascio, D., Brewster, A. S., et al. (2016). De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure. Nature, 539(7627), 43–47. https://doi.org/10.1038/nature19825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fernández de la Mora, J. (2007). The fluid dynamics of Taylor cones. Annual Review of Fluid Mechanics, 39(1), 217–243. https://doi.org/10.1146/annurev.fluid.39.050905.110159.

    Article  Google Scholar 

  65. Gañán-Calvo, A. M., & Barrero, A. (1999). A novel pneumatic technique to generate steady capillary microjets. Journal of Aerosol Science, 30(1), 117–125. https://doi.org/10.1016/S0021-8502(98)00029-9.

    Article  Google Scholar 

  66. Aquila, A., Hunter, M. S., Doak, R. B., Kirian, R. A., Fromme, P., White, T. A., et al. (2012). Time-resolved protein nanocrystallography using an X-ray free-electron laser. Optics Express, 20(3), 2706–2716 Retrieved from http://www.opticsinfobase.org/abstract.cfm?URI=oe-20-3-2706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Barty, A., Caleman, C., Aquila, A., Timneanu, N., Lomb, L., White, T. A., et al. (2012). Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nature Photonics, 6(1), 35–40. https://doi.org/10.1038/nphoton.2011.297.

    Article  CAS  PubMed  Google Scholar 

  68. Boutet, S., Lomb, L., Williams, G. J., Barends, T. R. M., Aquila, A., Doak, R. B., et al. (2012). High-resolution protein structure determination by serial femtosecond crystallography. Science, 337(6092), 362–364. https://doi.org/10.1126/science.1217737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Koopmann, R., Cupelli, K., Redecke, L., Nass, K., DePonte, D. P., White, T. A., et al. (2012). In vivo protein crystallization opens new routes in structural biology. Nature Methods, 9(3), 259–262. https://doi.org/10.1038/nmeth.1859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lomb, L., Barends, T. R. M., Kassemeyer, S., Aquila, A., Epp, S., Erk, B., et al. (2011). Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser. Physical Review B, 84(21), 1–6. https://doi.org/10.1103/PhysRevB.84.214111.

    Article  CAS  Google Scholar 

  71. Garman, E. (1999). Cool data: Quantity AND quality. Acta Crystallographica, Section D: Biological Crystallography, 55(10), 1641–1653. https://doi.org/10.1107/S0907444999008653.

    Article  CAS  Google Scholar 

  72. Garman, E. F., & Owen, R. L. (2006). Cryocooling and radiation damage in macromolecular crystallography. Acta Crystallographica, Section D: Biological Crystallography, 62(1), 32–47. https://doi.org/10.1107/S0907444905034207.

    Article  CAS  Google Scholar 

  73. Ibrahim, M., Chatterjee, R., Hellmich, J., Tran, R., Bommer, M., Yachandra, V. K., et al. (2015). Improvements in serial femtosecond crystallography of photosystem II by optimizing crystal uniformity using microseeding procedures. Structural Dynamics, 2(4), 041705. https://doi.org/10.1063/1.4919741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gañán-Calvo, A. M., & Montanero, J. (2009). Revision of capillary cone-jet physics: Electrospray and flow focusing. Physical Review E, 79(6), 1–18. https://doi.org/10.1103/PhysRevE.79.066305.

    Article  CAS  Google Scholar 

  75. Liang, M., Williams, G. J., Messerschmidt, M., Seibert, M. M., Montanez, P. A., Hayes, M., et al. (2015). The coherent X-ray imaging instrument at the Linac Coherent Light Source. Journal of Synchrotron Radiation, 22(3), 514–519. https://doi.org/10.1107/S160057751500449X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schlichting, I. (2015). Serial femtosecond crystallography: The first five years. IUCrJ, 2, 246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Redecke, L., Nass, K., DePonte, D. P., White, T. A., Rehders, D., Barty, A., et al. (2013). Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser. Science, 339, 227–230.

    Article  CAS  PubMed  Google Scholar 

  78. Emma, P., Akre, R., Arthur, J., Bionta, R., Bostedt, C., Bozek, J., et al. (2010). First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photonics, 4, 641–647.

    Article  CAS  Google Scholar 

  79. Beyerlein, K. R., Adriano, L., Heymann, M., Kirian, R., Knoška, J., Wilde, F., et al. (2015). Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery. The Review of Scientific Instruments, 86, 125104.

    Article  CAS  PubMed  Google Scholar 

  80. Barends, T. R., Foucar, L., Ardevol, A., Nass, K., Aquila, A., Botha, S., et al. (2015). Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science, 350, 445–450.

    Article  CAS  PubMed  Google Scholar 

  81. Coquelle, N., Sliwa, M., Woodhouse, J., Schirò, G., Adam, V., Aquila, A., et al. (2018). Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nature Chemistry, 10, 31–37.

    Article  CAS  PubMed  Google Scholar 

  82. Pande, K., Hutchison, C. D., Groenhof, G., Aquila, A., Robinson, J. S., Tenboer, J., et al. (2016). Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science, 352, 725–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tenboer, J., Basu, S., Zatsepin, N., Pande, K., Milathianaki, D., Frank, M., et al. (2014). Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science, 346, 1242–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kupitz, C., Olmos Jr., J. L., Holl, M., Tremblay, L., Pande, K., Pandey, S., et al. (2017). Structural enzymology using X-ray free electron lasers. Structural Dynamics, 4(4), 044003.

    Article  CAS  PubMed  Google Scholar 

  85. Stagno, J. R., Liu, Y., Bhandari, Y. R., Conrad, C. E., Panja, S., Swain, M., et al. (2017). Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature, 541, 242–246.

    Article  CAS  PubMed  Google Scholar 

  86. Gañán-Calvo, A. M., González-Prieto, R., Riesco-Chueca, P., Herrada, M. A., & Flores-Mosquera, M. (2007). Focusing capillary jets close to the continuum limit. Nature Physics, 3, 737–742.

    Article  CAS  Google Scholar 

  87. Acero, A. J., Ferrera, C., Montanero, J. M., & Gañán-Calvo, A. M. (2012). Focusing liquid microjets with nozzles. Journal of Micromechanics and Microengineering, 22, 065011.

    Article  CAS  Google Scholar 

  88. Montanero, J. M., Rebollo-Munoz, N., Herrada, M. A., & Gañán-Calvo, A. M. (2011). Global stability of the focusing effect of fluid jet flows. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 83, 036309.

    Article  CAS  PubMed  Google Scholar 

  89. Vega, E. J., Montanero, J. M., Herrada, M. A., & Gañán-Calvo, A. M. (2010). Global and local instability of flow focusing: The influence of the geometry. Physics of Fluids, 22, 064105.

    Article  CAS  Google Scholar 

  90. Schmidt, M. (2013). Mix and inject: Reaction initiation by diffusion for time-resolved macromolecular crystallography. Advances in Condensed Matter Physics, 2013, 1–10.

    Article  CAS  Google Scholar 

  91. Calvey, G. D., Katz, A. M., Schaffer, C. B., & Pollack, L. (2016). Mixing injector enables time-resolved crystallography with high hit rate at X-ray free electron lasers. Structural Dynamics, 3, 054301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Chavas, L. M., Gumprecht, L., & Chapman, H. N. (2015). Possibilities for serial femtosecond crystallography sample delivery at future light sources. Structural Dynamics, 2, 041709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Trebbin, M., Krüger, K., DePonte, D., Roth, S. V., Chapman, H. N., & Förster, S. (2014). Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions. Lab on a Chip, 14, 1733–1745.

    Article  CAS  PubMed  Google Scholar 

  94. Au, A. K., Huynh, W., Horowitz, L. F., & Folch, A. (2016). 3D-printed microfluidics. Angewandte Chemie (International Ed. in English), 55, 3862–3881.

    Article  CAS  Google Scholar 

  95. Moffat, K. (2014). Time-resolved crystallography and protein design: Signalling photoreceptors and optogenetics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130568.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Neutze, R. (2014). Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130318.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Neutze, R., & Moffat, K. (2012). Time-resolved structural studies at synchrotrons and X-ray free electron lasers: Opportunities and challenges. Current Opinion in Structural Biology, 22, 651–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schlichting, I., & Goody, R. S. (1997). Triggering methods in crystallographic enzyme kinetics. Methods in Enzymology, 277, 467–490.

    Article  CAS  PubMed  Google Scholar 

  99. Barends, T., White, T. A., Barty, A., Foucar, L., Messerschmidt, M., Alonso-Mori, R., et al. (2015). Effects of self-seeding and crystal post-selection on the quality of Monte Carlo-integrated SFX data. Journal of Synchrotron Radiation, 22, 644.

    Article  CAS  PubMed  Google Scholar 

  100. Brennich, M. E., Nolting, J. F., Dammann, C., Nöding, B., Bauch, S., & Herrmann, H. (2011). Dynamics of intermediate filament assembly followed in micro-flow by small angle X-ray scattering. Lab on a Chip, 11, 708–716.

    Article  CAS  PubMed  Google Scholar 

  101. Knight, J., Vishwanath, A., Brody, J., & Austin, R. (1998). Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds. Physical Review Letters, 80, 3863–3866.

    Article  CAS  Google Scholar 

  102. Park, H. Y., Qiu, X., Rhoades, E., Korlach, J., Kwok, L. W., & Zipfel, W. R. (2006). Achieving uniform mixing in a microfluidic device: Hydrodynamic focusing prior to mixing. Analytical Chemistry, 78, 4465–4473.

    Article  CAS  PubMed  Google Scholar 

  103. Pollack, L., & Doniach, S. (2009). Time-resolved X-ray scattering and RNA folding. Methods in Enzymology, 469, 253–268.

    Article  CAS  PubMed  Google Scholar 

  104. Pollack, L., Tate, M. W., Darnton, N. C., Knight, J. B., Gruner, S. M., Eaton, W. A., et al. (1999). Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle x-ray scattering. Proceedings of the National Academy of Sciences, 96, 10115–10117.

    Article  CAS  Google Scholar 

  105. Zahoor, R., Belšak, G., Bajt, S., Weckert, E., & Hajdu, J. (2018). Simulation of liquid micro-jet in free expanding high-speed co-flowing gas streams. Microfluidics and Nanofluidics, 22, 87. https://doi.org/10.1007/s10404-018-2110-0.

    Article  CAS  Google Scholar 

  106. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E., & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406, 752–757.

    Article  CAS  PubMed  Google Scholar 

  107. Fukuda, Y., Tse, K. M., Nakane, T., Nakatsu, T., Suzuki, M., Sugahara, M., et al. (2016). Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography. Proceedings of the National Academy of Sciences of the United States of America, 113, 2928–2933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu, W., Wacker, D., Gati, C., Han, G. W., James, D., Wang, D., et al. (2013). Serial femtosecond crystallography of G protein–coupled receptors. Science, 342, 1521–1524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mafuné, F., Miyajima, K., Tono, K., Takeda, Y., Kohno, J. Y., Miyauchi, N., et al. (2016). Microcrystal delivery by pulsed liquid droplet for serial femtosecond crystallography. Acta Crystallographica, Section D: Biological Crystallography, 72(Pt 4), 520–523.

    Article  CAS  Google Scholar 

  110. Zhou, Q., Lai, Y., Bacaj, T., Zhao, M., Lyubimov, A. Y., Uervirojnangkoorn, M., et al. (2015). Architecture of the synaptotagmin–SNARE machinery for neuronal exocytosis. Nature, 525, 62–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kupitz, C., Basu, S., Grotjohann, I., Fromme, R., Zatsepin, N. A., Rendek, K. N., et al. (2014). Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature, 513, 261–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nango, E., Royant, A., Kubo, M., Nakane, T., Wickstrand, C., Kimura, T., et al. (2016). A three dimensional movie of structural changes in bacteriorhodopsin. Science, 354, 1552–1557.

    Article  CAS  PubMed  Google Scholar 

  113. Nogly, P., Panneels, V., Nelson, G., Gati, C., Kimura, T., Milne, C., et al. (2016). Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography. Nature Communications, 7, 12314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Suga, M., Akita, F., Sugahara, M., Kubo, M., Nakajima, Y., Nakane, T., et al. (2017). Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature, 543, 131–135.

    Article  CAS  PubMed  Google Scholar 

  115. Sugahara, M., Song, C., Suzuki, M., Masuda, T., Inoue, S., Nakane, T., et al. (2016). Oil-free hyaluronic acid matrix for serial femtosecond crystallography. Scientific Reports, 6, 24484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sugahara, M., Nakane, T., Masuda, T., Suzuki, M., Inoue, S., Song, C., et al. (2017). Hydroxyethyl cellulose matrix applied to serial crystallography. Scientific Reports, 7, 703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Hope, H. (1988). Acta Crystallographica. Section B, 44, 22–26.

    Article  Google Scholar 

  118. Nakane, T., Song, C., Suzuki, M., Nango, E., Kobayashi, J., Masuda, T., et al. (2015). Native sulfur/chlorine SAD phasing for serial femtosecond crystallography. Acta Crystallographica Section D: Structural Biology, 71, 2519–2525.

    Article  CAS  Google Scholar 

  119. Yamashita, K., Pan, D., Okuda, T., Sugahara, M., Kodan, A., Yamaguchi, T., et al. (2015). An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography. Scientific Reports, 5, 14017.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Colletier, J. P., Sliwa, M., Gallat, F. X., Sugahara, M., Guillon, V., Schirò, G., et al. (2016). Serial femtosecond crystallography and ultrafast absorption spectroscopy of the photoswitchable fluorescent protein IrisFP. Journal of Physical Chemistry Letters, 7, 882–887.

    Article  CAS  Google Scholar 

  121. Nakane, T., Hanashima, S., Suzuki, M., Saiki, H., Hayashi, T., Kakinouchi, K., et al. (2016). Membrane protein structure determination by SAD, SIR or SIRAS phasing in serial femtosecond crystallography using a novel iododetergent. Proceedings of the National Academy of Sciences of the United States of America, 113, 13039–13044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Edlund, P., Takala, H., Claesson, E., Henry, L., Dods, R., Lehtivuori, H., et al. (2016). The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography. Scientific Reports, 6, 35279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Masuda, T., Suzuki, M., Inoue, S., Song, C., Nakane, T., Nango, E., et al. (2017). Atomic resolution structure of serine protease proteinase K at ambient temperature. Scientific Reports, 7, 45604.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Cheng, A., Hummel, B., Qiu, H., & Caffrey, M. (1998). A simple mechanical mixer for small viscous lipid-containing samples. Chemistry and Physics of Lipids, 95, 11–21.

    Article  CAS  PubMed  Google Scholar 

  125. Barends, T. R. M., Foucar, L., Botha, S., Doak, R. B., Shoeman, R. L., Nass, K., et al. (2014). De novo protein crystal structure determination from X-ray free-electron laser data. Nature, 505, 244–247.

    Article  CAS  PubMed  Google Scholar 

  126. Hunter, M. S., Yoon, C. H., DeMirci, H., Sierra, R. G., Dao, E. H., Ahmadi, R., et al. (2016). Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser. Nature Communications, 7, 13388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nass, K., Meinhart, A., Barends, T. R., Foucar, L., Gorel, A., Aquila, A., et al. (2016). Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCrJ, 3, 180–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Thorn, A., & Sheldrick, G. M. (2011). ANODE: Anomalous and heavy-atom density calculation. Journal of Applied Crystallography, 44(6), 1285–1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Stellato, F., Oberthür, D., Liang, M., Bean, R., Gati, C., Yefanov, O., et al. (2014). Room-temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ, 1, 204–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Weierstall, U. (2014). Liquid sample delivery techniques for serial femtosecond crystallography. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130337.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Nakane, T., Joti, Y., Tono, K., Yabashi, M., Nango, E., Iwata, S., et al. (2016). Data processing pipeline for serial femtosecond crystallography at SACLA. Journal of Applied Crystallography, 49, 1035–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Roessler, C. G., Agarwal, R., Allaire, M., Alonso-Mori, R., Andi, B., Bachega, J. F. R., et al. (2016). Acoustic injectors for drop-on-demand serial femtosecond crystallography. Structure, 24, 631–640. https://doi.org/10.1016/j.str.2016.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Beyerlein, K. R., Dierksmeyer, D., Mariani, V., Kuhn, M., Sarrou, I., Ottaviano, A., et al. (2017). Mix-and-diffuse serial synchrotron crystallography. IUCrJ, 4, 769–777. https://doi.org/10.1107/S2052252517013124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fuller, F. D., Gul, S., Chatterjee, R., Burgie, E. S., Young, I. D., Lebrette, H., et al. (2017). Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nature Methods, 14(4), 443–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kok, B., Forbush, B., & Mcgloin, M. (1970). Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochemistry and Photobiology, 11(6), 457–475. https://doi.org/10.1111/j.1751-1097.1970.tb06017.x.

    Article  CAS  PubMed  Google Scholar 

  136. Hunter, M. S., Segelke, B., Messerschmidt, M., Williams, G. J., Zatsepin, N. A., Barty, A., et al. (2014). Fixed-target protein serial microcrystallography with an x-ray free electron laser. Scientific Reports, 4, 6026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kimura, T., Joti, Y., Shibuya, A., Song, C., Kim, S., Tono, K., et al. (2014). Imaging live cell in micro-liquid enclosure by X-ray laser diffraction. Nature Communications, 5, 3052.

    Article  PubMed  CAS  Google Scholar 

  138. Murray, T. D., Lyubimov, A. Y., Ogata, C. M., Vo, H., Uervirojnangkoorn, M., Brunger, A. T., et al. (2015). A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions. Acta Crystallographica Section D: Biological Crystallography, 71, 1987–1997.

    Article  CAS  PubMed Central  Google Scholar 

  139. Cohen, A. E., Soltis, S. M., González, A., Aguila, L., Alonso-Mori, R., Barnes, C. O., et al. (2014). Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proceedings of the National Academy of Sciences of the United States of America, 111, 17122–17127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Roedig, P., Vartiainen, I., Duman, R., Panneerselvam, S., Stübe, N., Lorbeer, O., et al. (2015). A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Scientific Reports, 5, 10451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zarrine-Afsar, A., Barends, T. R. M., Müller, C., Fuchs, M. R., Lomb, L., Schlichting, I., et al. (2012). Crystallography on a chip. Acta Crystallographica Section D: Biological Crystallography, 68, 321–323.

    Article  CAS  Google Scholar 

  142. Mueller, C., Marx, A., Epp, S. W., Zhong, Y., Kuo, A., Balo, A. R., et al. (2015). Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography. Structural Dynamics, 2, 054302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Feld, G. K., Heymann, M., Benner, W. H., Pardini, T., Tsai, C. J., Boutet, S., et al. (2015). Low-Z polymer sample supports for fixed-target serial femtosecond X-ray crystallography. Journal of Applied Crystallography, 48(4), 1072–1079.

    Article  CAS  Google Scholar 

  144. Lyubimov, A. Y., Murray, T. D., Koehl, A., Araci, I. E., Uervirojnangkoorn, M., Zeldin, O. B., et al. (2015). Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array. Acta Crystallographica Section D, 71(4), 928–940.

    Article  CAS  Google Scholar 

  145. Roedig, P., Ginn, H. M., Pakendorf, T., Sutton, G., Harlos, K., Walter, T. S., et al. (2017). High-speed fixed-target serial virus crystallography. Nature Methods, 14, 805. https://doi.org/10.1038/nmeth.4335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Opara, N., Martiel, I., Arnold, S. A., Braun, T., Stahlberg, H., Makita, M., et al. (2017). Direct protein crystallization on ultrathin membranes for diffraction measurements at X-ray free-electron lasers. Journal of Applied Crystallography, 50, 909–918.

    Article  CAS  Google Scholar 

  147. Meents, A., Gutmann, S., Wagner, A., & Schulze-Briese, C. (2009). Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures. Proceedings of the National Academy of Sciences, 107(3), 1094–1099. https://doi.org/10.1073/pnas.0905481107.

    Article  CAS  Google Scholar 

  148. Owen, R. L., Rudiño-Piñera, E., & Garman, E. F. (2006). Experimental determination of the radiation dose limit for cryocooled protein crystals. Proc Natl Acad Sci USA, 103(13), 4912–4917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Suga, M., Akita, F., Hirata, K., Ueno, G., Murakami, H., Nakajima, Y., et al. (2015). Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature, 517(7532), 99–103. https://doi.org/10.1038/nature13991.

    Article  CAS  PubMed  Google Scholar 

  150. Fraser, J. S., van den Bedemb, H., Samelsona, A. J., Langa, P. T., Holton, J. M., et al. (2011). Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16247–16252. https://doi.org/10.1073/pnas.1111325108.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Coquelle, N., Brewster, A. S., Kapp, U., Shilova, A., Weinhausen, B., Burghammer, M., et al. (2015). Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams. Acta Crystallographica Section D: Biological Crystallography, 71(Pt 5), 1184–1196. https://doi.org/10.1107/S1399004715004514 Epub 2015 Apr 25.

    Article  CAS  PubMed Central  Google Scholar 

  152. Sui, S., Wang, Y., Kolewe, K. W., Srajer, V., Henning, R., Schiffman, J. D., et al. (2016). Graphene-based microfluidics for serial crystallography. Lab on a Chip, 16(16), 3082–3096. https://doi.org/10.1039/c6lc00451b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kiefersauer, R., Than, M. E., Dobbek, H., Gremer, L., Melero, M., Strobl, S., et al. (2000). Journal of Applied Crystallography, 33, 1223–1230.

    Article  CAS  Google Scholar 

  154. Sanchez Weatherby, J., Bowler, M. W., Huet, J., Gobbo, A., Felisaz, F., Lavault, B., et al. (2009). Improving diffraction by humidity control: A novel device compatible with X-ray beamlines. Acta Crystallographica. Section D, Biological Crystallography, 65, 1237–1246.

    Article  CAS  PubMed  Google Scholar 

  155. Roedig, P., Duman, R., Sanchez-Weatherby, J., Vartiainen, I., Burkhardt, A., Warmer, M., et al. (2016). Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering. Journal of Applied Crystallography, 49, 968–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Meents, A., Wiedorn, M. O., Srajer, V., Henning, R., Sarrou, I., Bergtholdt, J., et al. (2017). Pink beam serial crystallography. Nature Communications, 8, 1281. https://doi.org/10.1038/s41467-017-01417-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sherrell, D. A., Foster, A. J., Hudson, L., Nutter, B., O’Hea, J., Nelson, S., et al. (2015). A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources. Journal of Synchrotron Radiation, 22, 1372–1378.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Owen, R. L., Axford, D., Sherrell, D. A., Kuo, A., Ernst, O. P., Schulz, E. C., et al. (2017). Low-dose fixed-target serial synchrotron crystallography. Acta Crystallographica Section D: Biological Crystallography, 73, 373–378.

    Article  CAS  Google Scholar 

  159. Abdallah, B. G., Zatsepin, N. a., Roy-Chowdhury, S., Coe, J., Conrad, C. E., Dörner, K., et al. (2015). Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction. Structural Dynamics, 2, 041719. https://doi.org/10.1063/1.4928688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Koralek, J. D., Kim, J. B., Brůža, P., Curry, C. B., Chen, Z., Bechtel, H. A., et al. (2018). Generation and characterization of ultrathin free-flowing liquid sheets. Nature Communications, 9(1), 1–8. https://doi.org/10.1038/s41467-018-03696-w.

    Article  CAS  Google Scholar 

  161. Wiedorn, M. O., Awel, S., Morgan, A. J., Ayyer, K., Gevorkov, Y., Fleckenstein, H., et al. (2018). Rapid sample delivery for megahertz serial crystallography at X-ray FELs. IUCrJ, 5(5), 574–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raymond G. Sierra or Uwe Weierstall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sierra, R.G. et al. (2018). Sample Delivery Techniques for Serial Crystallography. In: Boutet, S., Fromme, P., Hunter, M. (eds) X-ray Free Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-030-00551-1_5

Download citation

Publish with us

Policies and ethics