Skip to main content

Future Directions of High Repetition Rate X-Ray Free Electron Lasers

  • Chapter
  • First Online:
X-ray Free Electron Lasers
  • 1276 Accesses

Abstract

A new scientific frontier opened in 2009 when the world’s first X-ray free electron laser (FEL), the Linac Coherent Light Source (LCLS) facility, began operations at SLAC National Accelerator Laboratory. The scientific start of LCLS has arguably been one of the most vigorous and successful of any new research facility, with a dramatic effect on a broad cross section of scientific fields, ranging from atomic and molecular science, ultrafast chemistry and catalysis, fluid dynamics, clean energy systems, structural biology, high energy-density science, photon science, and advanced materials [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For example, see details of the operating modes of LCLS at: https://lcls.slac.stanford.edu/machine-faq and the summary table at: https://portal.slac.stanford.edu/sites/lcls_public/machinefaqpix/MultiColorModes-8-22-16.pdf.

References

  1. Bostedt, C., Boutet, S., Fritz, D. M., Huang, Z., Lee, H. J., Lemke, H. T., et al. (2016). Linac Coherent Light Source: The first five years. Reviews of Modern Physics, 88(1), 015007.

    Article  Google Scholar 

  2. Kjær, K. S., & Gaffney, K. J. (2017). Finding intersections between electronic excited states with ultrafast X-ray scattering and spectroscopy. In Frontiers in optics 2017. Washington, D.C.: Optical Society of America.

    Google Scholar 

  3. Wernet, P., Kunnus, K., Josefsson, I., Rajkovic, I., Quevedo, W., Beye, M., et al. (2015). Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)(5) in solution. Nature, 520(7545), 78–81.

    Article  CAS  Google Scholar 

  4. Zhang, W., Alonso-Mori, R., Bergmann, U., Bressler, C., Chollet, M., Galler, A., et al. (2014). Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature, 509(7500), 345–348.

    Article  CAS  Google Scholar 

  5. Shvyd’ko, Y. (2015). Theory of angular-dispersive, imaging hard-x-ray spectrographs. Physical Review A, 91(5), 053817.

    Article  Google Scholar 

  6. Shvyd’ko, Y., et al. (2014). High-contrast sub-millivolt inelastic X-ray scattering for nano- and mesoscale science. Nature Communications, 5, 4219.

    Article  Google Scholar 

  7. Sutter, J. P., Baron, A. Q. R., Ishikawa, T., & Yamazaki, H. (2005). Examination of Bragg backscattering from crystalline quartz. Journal of Physics and Chemistry of Solids, 66(12), 2306–2309.

    Article  CAS  Google Scholar 

  8. Kukura, P., McCamant, D. W., & Mathies, R. A. (2007). Femtosecond stimulated Raman spectroscopy. Annual Review of Physical Chemistry, 58, 461–488.

    Article  CAS  Google Scholar 

  9. Harada, Y., Tokushima, T., Horikawa, Y., Takahashi, O., Niwa, H., Kobayashi, M., et al. (2013). Selective probing of the OH or OD stretch vibration in liquid water using resonant inelastic soft-X-ray scattering. Physical Review Letters, 111(19), 193001.

    Article  Google Scholar 

  10. Hennies, F., Pietzsch, A., Berglund, M., Föhlisch, A., Schmitt, T., Strocov, V., et al. (2010). Resonant inelastic scattering spectra of free molecules with vibrational resolution. Physical Review Letters, 104(19), 193002.

    Article  Google Scholar 

  11. Sinn, H. (2001). Spectroscopy with meV energy resolution. Journal of Physics-Condensed Matter, 13(34), 7525–7537.

    Article  CAS  Google Scholar 

  12. Yavas, H., et al. (2007). Sapphire analyzers for high-resolution X-ray spectroscopy. Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment, 582(1), 149–151.

    Article  CAS  Google Scholar 

  13. Rumaiz, A. K., et al. (2016). First experimental feasibility study of VIPIC: A custom-made detector for X-ray speckle measurements. Journal of Synchrotron Radiation, 23, 404–409.

    Article  Google Scholar 

  14. Grubel, G., et al. (2007). XPCS at the European X-ray free electron laser facility. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 262(2), 357–367.

    Article  Google Scholar 

  15. Gutt, C., et al. (2009). Measuring temporal speckle correlations at ultrafast x-ray sources. Optics Express, 17(1), 55–61.

    Article  CAS  Google Scholar 

  16. Trigo, M., et al. (2013). Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon-phonon correlations. Nature Physics, 9(12), 790–794.

    Article  CAS  Google Scholar 

  17. Tamasaku, K., Ishikawa, T., & Yabashi, M. (2003). High-resolution Fourier transform x-ray spectroscopy. Applied Physics Letters, 83(15), 2994–2996.

    Article  CAS  Google Scholar 

  18. Neutze, R., et al. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406(6797), 752–757.

    Article  CAS  Google Scholar 

  19. Barends, T. R. M., et al. (2015). Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science, 350(6259), 445–450.

    Article  CAS  Google Scholar 

  20. Coquelle, N., et al. (2017). Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nature Chemistry, 10, 31.

    Article  Google Scholar 

  21. Tenboer, J., et al. (2014). Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science, 346(6214), 1242–1246.

    Article  CAS  Google Scholar 

  22. Arnlund, D., et al. (2014). Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Nature Methods, 11(9), 923–926.

    Article  CAS  Google Scholar 

  23. Bergh, M., et al. (2008). Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction. Quarterly Reviews of Biophysics, 41(3-4), 181–204.

    Article  CAS  Google Scholar 

  24. Huldt, G., Szoke, A., & Hajdu, J. (2003). Diffraction imaging of single particles and biomolecules. Journal of Structural Biology, 144(1-2), 219–227.

    Article  CAS  Google Scholar 

  25. Aquila, A., Barty, A., Bostedt, C., Boutet, S., Carini, G., dePonte, D., et al. (2015). The Linac Coherent Light Source single particle imaging road map. Structural Dynamics, 2(4), 041701.

    Article  CAS  Google Scholar 

  26. Kam, Z. (1977). Determination of macromolecular structure in solution by spatial correlation of scattering fluctuations. Macromolecules, 10(5), 927–934.

    Article  CAS  Google Scholar 

  27. Kam, Z., Koch, M. H. J., & Bordas, J. (1981). Fluctuation X-ray-scattering from biological particles in frozen solution by using synchrotron radiation. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 78(6), 3559–3562.

    Article  CAS  Google Scholar 

  28. Malmerberg, E., Kerfeld, C. A., & Zwart, P. H. (2015). Operational properties of fluctuation X-ray scattering data. IUCrJ, 2, 309–316.

    Article  CAS  Google Scholar 

  29. Saldin, D. K., Shneerson, V. L., Howells, M. R., Marchesini, S., Chapman, H. N., Bogan, M., et al. (2010). Structure of a single particle from scattering by many particles randomly oriented about an axis: Toward structure solution without crystallization? New Journal of Physics, 12, 035014.

    Article  Google Scholar 

  30. Hosseinizadeh, A., et al. (2014). High-resolution structure of viruses from random diffraction snapshots. Philosophical Transactions of the Royal Society B-Biological Sciences, 369(1647), 20130326.

    Article  CAS  Google Scholar 

  31. Dashti, A., et al. (2014). Trajectories of the ribosome as a Brownian nanomachine. Proceedings of the National Academy of Sciences of the United States of America, 111(49), 17492–17497.

    Article  CAS  Google Scholar 

  32. Kern, J., Tran, R., Alonso-Mori, R., Koroidov, S., Echols, N., Hattne, J., et al. (2014). Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nature Communications, 5, 4371.

    Article  CAS  Google Scholar 

  33. Kupitz, C., et al. (2014). Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature, 513(7517), 261–265.

    Article  CAS  Google Scholar 

  34. Huang, S., et al. (2017). Generating single-spike hard X-ray pulses with nonlinear bunch compression in free-electron lasers. Physical Review Letters, 119(15), 154801.

    Article  CAS  Google Scholar 

  35. Marinelli, A., et al. (2017). Experimental demonstration of a single-spike hard-X-ray free-electron laser starting from noise. Applied Physics Letters, 111(15), 151101.

    Article  Google Scholar 

  36. Marcus, G., Penn, G., & Zholents, A. A. (2014). Free-electron laser design for four-wave mixing experiments with soft-X-ray pulses. Physical Review Letters, 113(2), 024801.

    Article  CAS  Google Scholar 

  37. Zholents, A. A., & Fawley, W. M. (2004). Proposal for intense attosecond radiation from an x-ray free-electron laser. Physical Review Letters, 92(22), 224801.

    Article  Google Scholar 

  38. Allaria, E., et al. (2013). Two-stage seeded soft-X-ray free-electron laser. Nature Photonics, 7(11), 913–918.

    Article  CAS  Google Scholar 

  39. Hemsing, E., et al. (2016). Echo-enabled harmonics up to the 75th order from precisely tailored electron beams. Nature Photonics, 10(8), 512–515.

    Article  CAS  Google Scholar 

  40. Stupakov, G. (2009). Using the beam-Echo effect for generation of short-wavelength radiation. Physical Review Letters, 102(7), 074801.

    Article  CAS  Google Scholar 

  41. Ackermann, S., et al. (2013). Generation of coherent 19-and 38-nm radiation at a free-Electron laser directly seeded at 38 nm. Physical Review Letters, 111(11), 114801.

    Article  CAS  Google Scholar 

  42. Schneidmiller, E. A., et al. (2017). First operation of a harmonic lasing self-seeded free electron laser. Physical Review Accelerators and Beams, 20(2), 020705.

    Article  Google Scholar 

  43. Xiang, D., et al. (2013). Purified self-amplified spontaneous emission free-electron lasers with slippage-boosted filtering. Physical Review Special Topics-Accelerators and Beams, 16(1), 010703.

    Article  Google Scholar 

  44. McNeil, B. W. J., Thompson, N. R., & Dunning, D. J. (2013). Transform-limited X-ray pulse generation from a high-brightness self-amplified spontaneous-emission free-electron laser. Physical Review Letters, 110(13), 134802.

    Article  CAS  Google Scholar 

  45. Hara, T., et al. (2013). Two-colour hard X-ray free-electron laser with wide tunability. Nature Communications, 4, 2919.

    Article  Google Scholar 

  46. Mozzanica, A., et al. (2016). Characterization results of the JUNGFRAU full scale readout ASIC. Journal of Instrumentation, 11, C02047.

    Article  Google Scholar 

  47. Ramilli, M., et al. (2017). Measurements with MONCH, a 25 mu m pixel pitch hybrid pixel detector. Journal of Instrumentation, 12, C01071.

    Article  Google Scholar 

  48. Blaj, G., Caragiulo, P., Carini, G., Dragone, A., Haller, G., Hart, P., et al. (2016). Future of ePix detectors for high repetition rate FELs. AIP Conference Proceedings, 1741, 040012.

    Article  Google Scholar 

  49. Shanks, K. S., Philipp, H. T., Weiss, J. T., Becker, J., Tate, M. W., & Gruner, S. M. (2016). The high dynamic range pixel array detector (HDR-PAD): Concept and design. AIP Conference Proceedings, 1741, 040009.

    Article  Google Scholar 

  50. Allahgholi, A., et al. (2015). AGIPD, a high dynamic range fast detector for the European XFEL. Journal of Instrumentation, 10, C12013.

    Article  Google Scholar 

  51. Veale, M. C., et al. (2017). Characterisation of the high dynamic range large pixel detector (LPD) and its use at X-ray free electron laser sources. Journal of Instrumentation, 12, P12003.

    Article  Google Scholar 

  52. Shin, K. W., Bradford, R., Lipton, R., Deptuch, G., Fahim, F., Madden, T., et al. (2015). Optimizing floating guard ring designs for FASPAX N-in-P silicon sensors. In 2015 IEEE nuclear science symposium and medical imaging conference (Nss/Mic) (pp. 1–8). New York: IEEE.

    Google Scholar 

  53. Deptuch, G. W., et al. (2014). Design and tests of the vertically integrated photon imaging chip. IEEE Transactions on Nuclear Science, 61(1), 663–674.

    Article  Google Scholar 

  54. Stan, C. A., et al. (2016). Liquid explosions induced by X-ray laser pulses. Nature Physics, 12(10), 966–971.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This chapter describes the work of a very large number of people at the SLAC National Accelerator Laboratory, the users of LCLS, and the wider community. Use of the LCLS is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract no. DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Dunne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dunne, M., Schoenlein, R.W. (2018). Future Directions of High Repetition Rate X-Ray Free Electron Lasers. In: Boutet, S., Fromme, P., Hunter, M. (eds) X-ray Free Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-030-00551-1_16

Download citation

Publish with us

Policies and ethics