Skip to main content

Liquid Chromatography for Plant Metabolite Profiling in the Field of Drug Discovery

  • Chapter
  • First Online:
Natural Products as Source of Molecules with Therapeutic Potential

Abstract

Although medicine has undergone massive evolutions, challenges are still present. Technological evolutions have had a major influence on the drug discovery process. As a consequence, this process nowadays has become much more rationalized than it used to be in its early days. However, in the end, substances are still screened for their ability to interact with pathophysiological processes in a trial-and-error approach. With chemical synthesis, we are now able to create chemicals with various related structures, which are then subjected to screening tests. In some cases, active compounds are found, which then go through a long process of characterizing their properties and turning them into drugs. However, many of the synthesized compounds do not make it to a final drug substance. To rationalize the drug discovery process, researchers often rely on earlier knowledge. One strategy is to explore the active substances in herbal products with known applications in traditional medicine, hoping that the active compounds are different from those currently used in the treatment of a given pathology, or allow treatments of health issues that could not be treated effectively before. Because of the complexity of herbal products, high requirements are set on the sample preparation and chemical separation techniques to create a metabolite profile, which is then processed chemometrically to find potentially active compounds. In this chapter an overview is given of the sample preparation and chemical separation techniques that are often used to develop such metabolite profiles (or fingerprints) and of the data handling approaches applied to indicate the active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alaerts G, Matthijs N, Smeyers-Verbeke J et al (2007) Chromatographic fingerprint development for herbal extracts: a screening and optimization methodology on monolithic columns. J Chromatogr A 1172:1–8

    Article  CAS  PubMed  Google Scholar 

  • Alaerts G, Dejaegher B, Smeyers-Verbeke J et al (2010a) Recent developments in chromatographic fingerprints from herbal products: set-up and data analysis. Comb Chem High Throughput Screen 13:900–922

    Article  CAS  PubMed  Google Scholar 

  • Alaerts G, Merino-Arévalo M, Dumarey M et al (2010b) Exploratory analysis of chromatographic fingerprints to distinguish rhizoma chuanxiong and rhizoma ligustici. J Chromatogr A 1217:7706–7716

    Article  CAS  PubMed  Google Scholar 

  • Allard PM, Genta-Jouve G, Wolfender JL (2017) Deep metabolome annotation in natural products research: towards a virtuous cycle in metabolite identification. Curr Opinion Chem Biol 36:40–49

    Article  CAS  Google Scholar 

  • Atanasov AG, Waltenberger B, Pferschy-Wenzing EM et al (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azmir J, Zaidul ISM, Rahman MM et al (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117:426–436

    Article  CAS  Google Scholar 

  • Azwanida N (2015) A review on the extraction methods used in medicinal plants, principle, strength and limitation. Med Aromat Plants 4(2–6):196

    Google Scholar 

  • Baell JB (2016) Feeling nature’s PAINS: natural products, natural product drugs, and pan assay interference compounds (PAINS). J Nat Prod 79:616–628

    Article  CAS  PubMed  Google Scholar 

  • Baell JB, Walters MA (2014) Chemical con artists foil drug discovery. Nature 513:481–483

    Article  CAS  PubMed  Google Scholar 

  • Begou O, Gika HG, Wilson ID et al (2017) Hyphenated MS-based targeted approaches in metabolomics. Analyst 142:3079–3100

    Article  CAS  PubMed  Google Scholar 

  • Ben Ahmed Z, Yousfi M, Viaene J et al (2016) Antioxidant activities of Pistacia atlantica extracts modeled as a function of chromatographic fingerprints in order to identify antioxidant markers. Microchem J 128:208–217

    Article  CAS  Google Scholar 

  • Ben Ahmed Z, Yousfi M, Viaene J et al (2017) Seasonal, gender and regional variations in total phenolic, flavonoid, and condensed tannins contents and in antioxidant properties from Pistacia atlantica ssp. leaves. Pharm Biol 55:1185–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Ahmed Z, Yousfi M, Viaene J et al (2018) Potentially antidiabetic and antihypertensive compounds identified from Pistacia atlantica leaf extracts by LC fingerprinting. J Pharm Biomed Anal 149:547–556

    Article  CAS  Google Scholar 

  • Bloemberg TG, Gerretzen J, Lunshof A et al (2013) Warping methods for spectroscopic and chromatographic signal alignment: a tutorial. Anal Chim Acta 781:14–32

    Article  CAS  PubMed  Google Scholar 

  • Brusotti G, Cesari I, Dentamaro A (2014) Isolation and characterization of bioactive compounds from plant resources: the role of analysis in the ethnopharmacological approach. J Pharm Biomed Anal 87:218–228

    Article  CAS  PubMed  Google Scholar 

  • Butler MS, Fontaine F, Cooper MA (2014) Natural product libraries: assembly, maintenance, and screening. Planta Med 80:1161–1170

    CAS  PubMed  Google Scholar 

  • Cardoso-Taketa AT, Pereda-Miranda R, Choi YH et al (2008) Metabolic profiling of the Mexican anxiolytic and sedative plant Galphimia glauca using nuclear magnetic resonance spectroscopy and multivariate data analysis. Planta Med 74:1295–1301

    Article  CAS  PubMed  Google Scholar 

  • Choi YH, Verpoorte R (2014) Metabolomics: what you see is what you extract. Phytochem Anal 25:289–290

    Article  CAS  PubMed  Google Scholar 

  • Ćujić N, Šavikin K, Janković T et al (2016) Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chem 194:135–142

    Article  CAS  PubMed  Google Scholar 

  • de O Silva E, Borges LL, da Conceição EC et al (2017) Box–Behnken experimental design for extraction of artemisinin from Artemisia annua and validation of the assay method. Rev Bras Farmacogn 27:519–524

    Article  CAS  Google Scholar 

  • Dary C, Baghdikian B, Kim S et al (2017) Optimization of ultrasound-assisted extraction of bioactive alkaloids from Stephania cambodica using response surface methodology. C R Chim 20:996–1005

    Article  CAS  Google Scholar 

  • Das AK, Mandal V, Mandal SC (2013) A brief understanding of process optimisation in microwave-assisted extraction of botanical materials: options and opportunities with chemometric tools. Phytochem Anal 25:1–12

    Article  CAS  PubMed  Google Scholar 

  • David B, Wolfender JL, Dias DA (2015) The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev 14:299–315

    Article  CAS  Google Scholar 

  • De Monte C, Carradori S, Granese A et al (2014) Modern extraction techniques and their impact on the pharmacological profile of Serenoa repens extracts for the treatment of lower urinary tract symptoms. BMC Urol 14(63):1–11

    Google Scholar 

  • Dejaegher B, Alaerts G, Matthijs N (2010) Methodology to develop liquid chromatographic fingerprints for the quality control of herbal medicines. Acta Chromatogr 22:237–258

    Article  CAS  Google Scholar 

  • Doke SK, Dhawale SC (2015) Alternatives to animal testing: a review. Saudi Pharm J 23:223–229

    Article  PubMed  Google Scholar 

  • Dong MW (2006) Modern HPLC for practicing scientists. Wiley, Hoboken, 304pp

    Book  Google Scholar 

  • Esbensen KH, Geladi P (2009) Principal component analysis: concept, geometrical interpretation, mathematical background, algorithms, history, practice (Chapter 2.13). In: Brown SD, Tauler R, Walczak B (eds) Comprehensive chemometrics, vol 2. Elsevier, Amsterdam, pp 211–226

    Chapter  Google Scholar 

  • Esteki M, Farajmand B, Amanifar S et al (2017) Classification and authentication of Iranian walnuts according to their geographical origin based on gas chromatographic fatty acid fingerprint analysis using pattern recognition methods. Chem Intell Lab Syst 1217:7706–7716

    Google Scholar 

  • Garrido L, Beckmann N (eds) (2013) New applications of NMR in drug discovery and development. RSC Publishing, Cambridge, UK, 530pp

    Google Scholar 

  • Gauglitz G, Vo-Dinh T (eds) (2003) Handbook of spectroscopy. Volume 1. Wiley-VCH, Weinheim, 538pp

    Google Scholar 

  • Gemperline E, Keller C, Li L (2016) Mass spectrometry in plant-omics. Anal Chem 88:3422–3434

    Article  CAS  PubMed  Google Scholar 

  • Gerretzen J, Szymańska E, Jansen JJ et al (2015) Simple and effective way for data preprocessing selection based on design of experiments. Anal Chem 87:12096–12103

    Article  CAS  PubMed  Google Scholar 

  • Goodarzi M, Russell PJ, Vander Heyden Y (2013) Similarity analyses of chromatographic herbal fingerprints: a review. Anal Chimica Acta 804:16–28

    Article  CAS  Google Scholar 

  • Guiochon G, Gritti F (2011) Shell particles, trials, tribulations and triumphs. J Chromatogr A 1218:1915–1938

    Article  CAS  PubMed  Google Scholar 

  • Gunzler H, Williams A (eds) (2001) Handbook of analytical techniques. Wiley-VCH, Weinheim, 1182pp

    Google Scholar 

  • Gupta A, Naraniwal M, Kothari V (2012) Modern extraction methods for preparation of bioactive plant extracts. Int J Appl Nat Sci 1:8–26

    Google Scholar 

  • Hammi KM, Jdey A, Abdelly C et al (2015) Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology. Food Chem 184:80–89

    Article  CAS  PubMed  Google Scholar 

  • Harvey L, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111–129

    Article  CAS  PubMed  Google Scholar 

  • Hayes R, Ahmed A, Edge T et al (2014) Core-shell particles: preparation, fundamentals and applications in high performance liquid chromatography. J Chromatogr A 1357:36–52

    Article  CAS  PubMed  Google Scholar 

  • He Y, Wu Q, Hansen SH et al (2013) Differentiation of tannin-containing herbal drugs by HPLC fingerprints. Pharmazie 68:155–159

    CAS  PubMed  Google Scholar 

  • Henrich CJ, Beutler JA (2013) Matching the power of high throughput screening to the chemical diversity of natural products. Nat Prod Rep 30:1284–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill CB, Roessner U (2015) Advances in high-throughput LC-MS analysis for plant metabolomics. In: de Vooght-Johnson R (ed) Advanced LC-MS applications for metabolomics. Future Science Ltd, London, pp 58–71

    Chapter  Google Scholar 

  • Hubert J, Nuzillard JM, Renault JH (2017) Dereplication strategies in natural product research: how many tools and methodologies behind the same concept? Phytochem Rev 16:55–95

    Article  CAS  Google Scholar 

  • Huie CW (2002) A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal Bioanal Chem 373:23–30

    Article  CAS  PubMed  Google Scholar 

  • Izadiyan P, Hemmateenejad B (2016) Multi-response optimization of factors affecting ultrasonic assisted extraction from Iranian basil using central composite design. Food Chem 190:864–870

    Article  CAS  PubMed  Google Scholar 

  • Kaiser KA, Barding GA Jr, Larive CK (2009) A comparison of metabolite extraction strategies for 1H-NMR-based metabolic profiling using mature leaf tissue from the model plant Arabidopsis thaliana. Magn Reson Chem 47:S147–S156

    Article  CAS  PubMed  Google Scholar 

  • Kang KB, Lee DY, Kim TB et al (2013) Prediction of tyrosinase inhibitory activities of Morus alba root bark extracts from HPLC fingerprints. Microchem J 110:731–738

    Article  CAS  Google Scholar 

  • Kim HK, Verpoorte R (2010) Sample preparation for plant metabolomics. Phytochem Anal 21:4–13

    Article  CAS  PubMed  Google Scholar 

  • Klein-Júnior LC, Viaene J, Salton J et al (2016a) The use of chemometrics to study multifunctional indole alkaloids from Psychotria nemorosa (Palicourea comb. nov.). Part I: extraction and fractionation optimization based on metabolic profiling. J Chromatogr A 1463:60–70

    Article  CAS  PubMed  Google Scholar 

  • Klein-Júnior LC, Viaene J, Tuenter E et al (2016b) The use of chemometrics to study multifunctional indole alkaloids from Psychotria nemorosa (Palicourea comb. nov.). Part II: indication of peaks related to the inhibition of butyrylcholinesterase and monoamine oxidase-A. J Chromatogr A 1463:71–80

    Article  CAS  PubMed  Google Scholar 

  • Klein-Júnior LC, Vander Heyden Y, Henriques A (2016c) Enlarging the bottleneck in the analysis of alkaloids: a review on sample preparation in herbal matrices. Trends Anal Chem 80:66–82

    Article  CAS  Google Scholar 

  • Korifi R, Le Dréau Y, Dupuy N (2014) Comparative study of the alignment method on experimental and simulated chromatographic data. J Sep Sci 37:3276–3291

    Article  CAS  PubMed  Google Scholar 

  • Kumar D (2016) Nuclear magnetic resonance (NMR) spectroscopy for metabolic profiling of medicinal plants and their products. Crit Rev Anal Chem 46:400–412

    Article  CAS  PubMed  Google Scholar 

  • Kvalheim OM, Chan HY, Benzie IFF et al (2011) Chromatographic profiling and multivariate analysis for screening and quantifying the contributions from individual components to the bioactive signature in natural products. Chemom Intell Lab Syst 107:98–105

    Article  CAS  Google Scholar 

  • La Barbera G, Capriotti AL, Cavaliere C et al (2017) Liquid chromatography – high resolution mass spectrometry for the analysis of phytochemicals in vegetal-derived food and beverages. Food Res Int 100:28–52

    Article  CAS  PubMed  Google Scholar 

  • Lee I, Yang J (2009) Common clustering algorithms (Chapter 2.27). In: Brown SD, Tauler R, Walczak B (eds) Comprehensive chemometrics, vol 2. Elsevier, Amsterdam, pp 557–618

    Google Scholar 

  • Li FS, Weng JK (2017) Demystifying traditional herbal medicine with modern approaches. Nat Plants 3(17109):1–7

    CAS  Google Scholar 

  • Li Y, Wu T, Zhu J et al (2010) Combinative method using HPLC fingerprint and quantitative analyses for quality consistency evaluation of a herbal medicinal preparation produced by different manufacturers. J Pharm Biomed Anal 52:597–602

    Article  CAS  PubMed  Google Scholar 

  • Li JR, Li M, Xia B et al (2013) Efficient optimization of ultrahigh-performance supercritical fluid chromatographic separation of Rosa sericea by response surface methodology. J Sep Sci 36:2114–2120

    Article  CAS  PubMed  Google Scholar 

  • Li P, Yue GGL, Kwok HF et al (2017) Using ultra-performance liquid chromatography quadrupole time of flight mass spectrometry-based chemometrics for the identification of anti-angiogenic biflavonoids from edible Garcinia species. J Agric Food Chem 65:8348–8355

    Article  CAS  PubMed  Google Scholar 

  • Liu WJH (ed) (2011) Traditional herbal medicine research methods. Identification, analysis, bioassay, and pharmaceutical and clinical studies. Wiley, Hoboken, 466pp

    Google Scholar 

  • Liu CT, Zhang M, Yan P et al (2016) Qualitative and quantitative analysis of volatile components of Zhengtian pills using gas chromatography mass spectrometry and ultra-high performance liquid chromatography. J Anal Methods Chem 2016:1–8

    Google Scholar 

  • Lough WJ, Wainer IW (1996) High performance liquid chromatography: fundamental principles and practice, 1st edn. Blackie Academic and Professional, Glasgow, 288pp

    Google Scholar 

  • Lu GH, Chan K, Liang YZ et al (2005) Development of high-performance liquid chromatographic fingerprints for distinguishing Chinese Angelica from related umbelliferae herbs. J Chromatogr A 1073:383–392

    Article  CAS  PubMed  Google Scholar 

  • Martin AC, Pawlus AD, Jewett EM et al (2014) Evaluating solvent extraction systems using metabolomics approaches. RSD Adv 4:26325–26334

    Article  CAS  Google Scholar 

  • McCloud TG (2010) High throughput extraction of plant, marine and fungal specimens for preservation of biologically active molecules. Molecules 15:4526–4563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munafò MR, Nosek BA, Bishop DVM et al (2017) A manifesto for reproducible science. Nat Human Behav 1:0021

    Article  Google Scholar 

  • Mushtaq MY, Choi YH, Verpoorte R et al (2014) Extraction for metabolomics: access to the metabolome. Phytochem Anal 25:291–306

    Article  CAS  PubMed  Google Scholar 

  • Nguyen Hoai N, Dejaegher B, Tistaert C et al (2009) Development of HPLC fingerprints for Mallotus species extracts and evaluation of the peaks responsible for their antioxidant activity. J Pharm Biomed Anal 50:753–763

    Article  CAS  PubMed  Google Scholar 

  • Pawar SV, Ho JC, Yadav GD et al (2017) The impending renaissance in discovery & development of natural products. Curr Top Med Chem 17:251–267

    Article  CAS  PubMed  Google Scholar 

  • Plant AL, Locascio LE, May WE et al (2014) Improved reproducibility by assuring confidence in measurements in biomedical research. Nat Method 11:895–898

    Article  CAS  Google Scholar 

  • Qin HL, Deng AJ, Du GH et al (2009) Fingerprinting analysis of Rhizoma chuanxiong of commercial types using 1H nuclear magnetic resonance spectroscopy and high performance liquid chromatography method. J Integr Plant Biol 51:537–544

    Article  CAS  PubMed  Google Scholar 

  • Raks V, Al-Suod H, Buszewski B (2018) Isolation, separation, and preconcentration of biologically active compounds from plant matrices by extraction techniques. Chromatographia 81:189–202

    Article  CAS  PubMed  Google Scholar 

  • Rates SMK (2001) Plants as source of drugs. Toxicon 39:603–613

    Article  CAS  PubMed  Google Scholar 

  • Reardon S (2016) A mouse’s house may ruin studies. Nature 530:264

    Article  CAS  PubMed  Google Scholar 

  • Ren S, Hinzman AA, Kang EL et al (2015) Computational and statistical analysis of metabolomics data. Metabolomics 11:1492–1513

    Article  CAS  Google Scholar 

  • Roessner U, Dias DA (eds) (2013) Metabolomics tools for natural product discovery: methods and protocols. Humana Press, New York, 311pp

    Google Scholar 

  • Sasidharan S, Chen Y, Saravanan D et al (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 8:1–10

    CAS  PubMed  Google Scholar 

  • Shen B (2015) A new golden age of natural products discovery. Cell 163:1297–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherma J, Fried B (eds) (2003) Handbook of thin-layer chromatography, 3rd edn. Marcel Dekker, New York, 1331pp

    Google Scholar 

  • Souza CRF, Bott RF, Oliviera WP (2007) Optimization of the extraction of flavonoid compounds from herbal material using experimental design and multi-response analysis. Lat Am J Pharm 26:682–690

    CAS  Google Scholar 

  • t’Kindt R, Morreel K, Deforce D et al (2009) Joint GC-MS and LC-MS platforms for comprehensive plant metabolomics: repeatability and sample pre-treatment. J Chrom B 877:3572–3580

    Article  CAS  Google Scholar 

  • Tang TX, Guo WY, Xu Y et al (2014) Thin-layer chromatographic identification of Chinese propolis using chemometric fingerprinting. Phytochem Anal 2:266–272

    Article  CAS  Google Scholar 

  • Tistaert C, Dejaegher B, Nguyen Hoai N et al (2009) Potential antioxidant compounds in Mallotus species fingerprints. Part I: Indication, using linear multivariate calibration techniques. Anal Chim Acta 652:189–197

    Article  CAS  PubMed  Google Scholar 

  • Tistaert C, Dejaegher B, Vander Heyden Y (2011) Chromatographic separation techniques and data handling methods for herbal fingerprints: a review. Anal Chim Acta 690:148–161

    Article  CAS  PubMed  Google Scholar 

  • Tu Y, Jeffries C, Ruan H et al (2010) Automated high-throughput system to fractionate plant natural products for drug discovery. J Nat Prod 73:751–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Universitätsbibliothek Leipzig (2016) Available at https://papyrusebers.de. Accessed Dec 2017

  • Van den Berg RA, Hoefsloot HCJ, Westerhuis JA et al (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vest Nielsen N-P, Carstensen JM, Smedsgaard J (1998) Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. J Chromatogr A 805:17–35

    Article  Google Scholar 

  • Vuckovic D (2012) Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Anal Bioanal Chem 403:1523–1548

    Article  CAS  PubMed  Google Scholar 

  • Wagner H, Ulrich-Merzenich G (2009) Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 16:97–110

    Article  CAS  PubMed  Google Scholar 

  • Waksmundzka-Hajnos M, Sherma J (eds) (2011) High performance liquid chromatography in phytochemical analysis. CRC Press, Boca Raton, 996pp

    Google Scholar 

  • Wang D, Wang S, Du Q et al (2014) Optimization of extraction and enrichment of steroidal alkaloids from bulbs of cultivated Fritillaria cirrhosa. Biomed Res Int 2014:1–15

    Google Scholar 

  • Watson JT, Sparkman OD (2007) Introduction to mass spectrometry: instrumentation, applications, and strategies for data interpretation, 4th edn. Wiley, Chichester, 864pp

    Google Scholar 

  • Wen Y, Chen L, Li J et al (2014) Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis. Trends Anal Chem 59:26–41

    Article  CAS  Google Scholar 

  • Wen C, Wang D, Li X et al (2018) Targeted isolation and identification of bioactive compounds lowering cholesterol in the crude extracts of crabapples using UPLC-DAD-MS-SPE/NMR based on pharmacology-guided PLS-DA. J Pharm and Biomed Anal 150:144–151

    Article  CAS  Google Scholar 

  • Wu H, Guo J, Chen S et al (2013) Recent developments in qualitative and quantitative analysis of phytochemical constituents and their metabolites using liquid chromatography-mass spectrometry. J Pharm Biomed Anal 72:267–291

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Yu D, Sun H et al (2015) Optimizing the extraction of anti-tumor alkaloids from the stem of Berberis amurensis by response surface methodology. Ind Crop Prod 69:68–75

    Article  CAS  Google Scholar 

  • Xu J, Xu QS, Chan CO et al (2015) Identifying bioactive components in natural products through chromatographic fingerprint. Anal Chim Acta 870:45–55

    Article  CAS  PubMed  Google Scholar 

  • Yuliana ND, Khatib A, Verpoorte R et al (2011) Comprehensive extraction method integrated with NMR metabolomics: a new bioactivity screening method for plants, adenosine a1 receptor binding compounds in Orthosiphon stamineus Benth. Anal Chem 83:6902–6906

    Article  CAS  PubMed  Google Scholar 

  • Zeaiter M, Rutledge D (2009) Preprocessing methods (Chapter 3.04). In: Brown SD, Tauler R, Walczak B (eds) Comprehensive chemometrics, vol 3. Elsevier, Amsterdam, pp 121–231

    Chapter  Google Scholar 

  • Zhu C, Liu X (2013) Optimization of extraction process of crude polysaccharides from pomegranate peel by response surface methodology. Carbohydr Polym 92:1197–1202

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Carlos Klein-Júnior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klein-Júnior, L.C., Viaene, J., Slosse, A., Vander Heyden, Y. (2018). Liquid Chromatography for Plant Metabolite Profiling in the Field of Drug Discovery. In: Cechinel Filho, V. (eds) Natural Products as Source of Molecules with Therapeutic Potential. Springer, Cham. https://doi.org/10.1007/978-3-030-00545-0_3

Download citation

Publish with us

Policies and ethics