Skip to main content

Selected Challenges in Realistic Multibody Modeling of Machines and Vehicles

  • Conference paper
  • First Online:
IUTAM Symposium on Intelligent Multibody Systems – Dynamics, Control, Simulation

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 33))

Abstract

Multibody modelling involves taking fundamental decisions during the multibody model construction that not only condition its validity for the particular application foreseen but also have fundamental implications on the suitability of the numerical methods used on its analysis. The decision on allowing a particular flexible body to exhibit linear or nonlinear deformations or even to consider it part of the multibody system or as a structural component with which the system interacts is a crucial part of the modeling process. The description of the kinematic relations between moving components can be represented by perfect kinematic constraints or by contact pairs, as when local effects in the joints, generally associated with deviations from nominal conditions or to functional features, must be considered. The interaction of the multibody model with the ‘environment’ may require a substantial modelling effort that involves decisions on geometric description of features, on contact mechanics or even on numerical methodologies to handle co-simulation of systems with equilibrium equations that are solved with different numerical methods. Several areas are transversal to all the challenges identified and discussed here. The suitability of the numerical time integrators not only to handle the multibody model assumptions but also their interaction with other systems are of fundamental importance in the correct solution of the system dynamics. Descriptive and differential geometry also plays a very important role not only in the description of the relative kinematics of the systems but also in the modelling of the interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hooker, W., Margulies, G.: The dynamical attitude equations for n-body satellite. J. Astronaut. Sci. 12, 123–128 (1965)

    MathSciNet  Google Scholar 

  2. Kane, T., Scher, M.: A dynamical explanation of the falling cat phenomenon. Int. J. Solids Struct. 5(7), 663–670 (1969)

    Article  Google Scholar 

  3. Kane, T., Scher, M.: Human self-rotation by means of limb movements. J. Biomech. 3(1), 39–49 (1970)

    Article  Google Scholar 

  4. Wittenburg, J.: The dynamics of systems of coupled rigid bodies. A new general formalism with applications. In: Grioli, G. (ed.) Stereodynamics. Edizione Cremonese, Roma (1971)

    Google Scholar 

  5. Wittenburg, J., Wolz, U., Schmidt, A.: MESA VERDE – a general-purpose program package for symbolical dynamics simulations of multibody systems. In: Schiehlen, W. (ed.) Multibody Systems Handbook. Springer, Heidelberg (1990)

    Google Scholar 

  6. Magnus, K.: Dynamics of Multibody Systems. Proceedings of the IUTAM Symposium, Munich, Germany, August 29 – September 3, 1977, Springer, Heidelberg (1978)

    Google Scholar 

  7. Haug, E.J. (ed.): Computer Aided Analysis and Optimization of Mechanical Systems Dynamics. Springer-Verlag, Heidelberg (1984)

    MATH  Google Scholar 

  8. Bianchi, G., Schiehlen, W. (eds.): Dynamics of Multibody Systems, Proceedings of the IUTAM/IFToMM Symposium, Udine, Italy, September 16–20, 1985. Springer, Heidelberg (1986)

    Google Scholar 

  9. Pereira, M., Ambrosio, J. (eds.): Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, NATO Science Series E, vol. 268. Springer, Dordrecht (1994)

    Google Scholar 

  10. Schiehlen, W.: Multibody dynamics: roots and perspectives. Multi-body Syst. Dyn. 1(2), 149–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wittenburg, J.: Dynamics of Systems of Rigid Bodies. Teubner-Verlag, Wiesbaden (1977)

    Book  MATH  Google Scholar 

  12. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood Cliffs (1988)

    Google Scholar 

  13. Kane, T., Levinson, D.: Dynamics: Theory and Applications. McGraw-Hill, San Francisco (1985)

    Google Scholar 

  14. Haug, E.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989)

    Google Scholar 

  15. Jalon, G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, Berlin (1994)

    Book  Google Scholar 

  16. Erdman, A.G., Sandor, G.N.: Kineto-elastodynamics – a review of the state of the art and trends. Mech. Mach. Theory. 7, 19–33 (1972)

    Article  Google Scholar 

  17. Lowen, G.G., Chassapis, C.: Elastic behavior of linkages: an update. Mech. Mach. Theory. 21, 33–42 (1986)

    Article  Google Scholar 

  18. Thompson, B.S., Sung, G.N.: Survey of finite element techniques for mechanism design. Mech. Mach. Theory. 21, 351–359 (1986)

    Article  Google Scholar 

  19. Song, J.O., Haug, E.J.: Dynamic analysis of planar flexible mechanisms. Comput. Methods Appl. Mech. Eng. 24, 359–381 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shabana, A.: Dynamics of Multibody Systems. Wiley, New York (1989)

    MATH  Google Scholar 

  21. Shabana, A., Wehage, R.: A coordinate reduction technique for transient analysis of spatial structures with large angular rotations. J. Struct. Mech. 11, 401–431 (1989)

    Article  Google Scholar 

  22. Meirovitch, L., Nelson, H.D.: On the high-spin motion of a satellite containing elastic parts. J. Spacecr. Rocket. 3, 1597–1602 (1966)

    Article  Google Scholar 

  23. Modi, V., Suleman, A., Ng, A.: An approach to dynamics and control of orbiting flexible structures. Int. J. Numer. Methods Eng. 32, 1727–1748 (1991)

    Article  MATH  Google Scholar 

  24. Banerjee, A.K., Nagarajan, S.: Efficient simulation of large overall motion of nonlinearly elastic beams. In: Proceedings of ESA International Workshop on Advanced Mathematical Methods in the Dynamics of Flexible Bodies, ESA, Noordwijk, The Netherlands (1996)

    Google Scholar 

  25. Kane, T., Ryan, R., Banerjee, A.: Dynamics of a cantilever beam attached to a moving base. AIAA J. Guid. Control Dyn. 10, 139–151 (1987)

    Article  Google Scholar 

  26. Wallrapp, O., Schwertassek, R.: Representation of geometric stiffening in multibody system simulation. Int. J. Numer. Methods Eng. 32, 1833–1850 (1991)

    Article  MATH  Google Scholar 

  27. Geradin, M.: Advanced methods in flexible multibody dynamics: review of element formulations and reduction methods. In: Proceedings of ESA International Workshop on Advanced Mathematical Methods in the Dynamics of Flexible Bodies, ESA, Noordwijk, The Netherlands (1996)

    Google Scholar 

  28. Belytschko, T., Hsieh, B.J.: Nonlinear transient finite element analysis with convected coordinates. Int. J. Numer. Methods Eng. 7, 255–271 (1973)

    Article  MATH  Google Scholar 

  29. Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions – a geometrically exact approach. Comp. Methods Appl. Mech. Eng. 66, 125–161 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bathe, K.-J., Bolourchi, S.: Large displacement analysis of three-dimensional beam structures. Int. J. Numer. Methods Eng. 14, 961–986 (1979)

    Article  MATH  Google Scholar 

  31. Cardona, A., Geradin, M.: A beam finite element non linear theory with finite rotations. Int. J. Numer. Methods Eng. 26, 2403–2438 (1988)

    Article  MATH  Google Scholar 

  32. Geradin, M., Cardona, A.: A modelling of superelements in mechanism analysis. Int. J. Numer. Methods Eng. 32, 1565–1594 (1991)

    Article  MATH  Google Scholar 

  33. Shabana, A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multi-body Syst. Dyn. 1, 339–348 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ambrósio, J., Nikravesh, P.: Elastic-plastic deformations in multibody dynamics. Nonlinear Dyn. 3, 85–104 (1992)

    Article  Google Scholar 

  35. Ambrósio, J.: Dynamics of structures undergoing gross motion and nonlinear deformations: a multibody approach. Comput. Struct. 59(6), 1001–1012 (1996)

    Article  MATH  Google Scholar 

  36. Pereira, M.S., Ambrósio, J.: Crashworthiness analysis and design using rigid-flexible multibody dynamics with application to train vehicles. Int. J. Numer. Methods Eng. 40(4), 655–687 (1997)

    Article  MATH  Google Scholar 

  37. Shabana, A.: Flexible multibody dynamics: review of past and recent developments. Multi-body Syst. Dyn. 1(2), 189–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Geradin, M., Cardona, E.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, Chichester (2001)

    Google Scholar 

  39. Bauchau, O.: Flexible Multibody Dynamics. Springer, Dordrecht (2011)

    Book  MATH  Google Scholar 

  40. Bremer, H.: Elastic Multibody Dynamics: A Direct Ritz Approach. Springer, Dordrecht (2008)

    Book  MATH  Google Scholar 

  41. Gonzalez-Palacios, M., Angeles, J.: Cam Synthesis. Springer, Dordrecht (1993)

    Book  MATH  Google Scholar 

  42. Gonzalez-Palacios, M., Angeles, J.: Synthesis of contact surfaces of spherical cam-oscillating roller-follower mechanisms. ASME J. Mech. Des. 116(1), 315–319 (1994)

    Article  Google Scholar 

  43. Pombo, J., Ambrósio, J.: General spatial curve joint for rail guided vehicles: kinematics and dynamics. Multi-body. Syst. Dyn. 9(3), 237–264 (2003)

    Article  MATH  Google Scholar 

  44. Ambrósio, J., Antunes, P., Pombo, J.: On the requirements of interpolating polynomials for path motion constraints. In: Kecskeméthy, A., Geu Flores, F. (eds.) Interdisciplinary Applications of Kinematics: Proceedings of the International Conference, pp. 179–197. Springer, Dordrecht (2015)

    Google Scholar 

  45. Tändl, M., Kecskemethy, A.: Singularity-free trajectory tracking with Frenet frames. In: Husty, M., Schroecker, H.-P. (eds.) Proceedings of the 1st Conference EuCoMeS. Innsbruck University Press, Obergurgl (2006)

    Google Scholar 

  46. Tändl, M.: Dynamic Simulation and Design of Roller Coaster Motion. VDI Verlag, Düsseldorf (2009)

    Google Scholar 

  47. Flores, P., Ambrósio, J., Pimenta Claro, J., Lankarani, H.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints. Springer, Dordrecht (2008)

    MATH  Google Scholar 

  48. Ambrósio, J., Verissimo, P.: Improved bushing models for vehicle dynamics. Multi-body Syst. Dyn. 22(4), 341–365 (2009)

    Article  MATH  Google Scholar 

  49. Magalhaes, H., Ambrósio, J., Pombo, J.: Railway vehicle modelling for the vehicle-track interaction compatibility analysis. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 230(3), 251–267 (2016)

    Google Scholar 

  50. Ambrósio, J., Pombo, J.: A unified formulation for mechanical joints with and without clearances/bushings and/or stops in the framework of multibody systems. Multi-body Syst. Dyn. 42(3), 317–345 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Akhadkar, N., Acary, V., Brogliato, B.: Multibody systems with 3D revolute joints with clearances: an industrial case study with an experimental validation. Multi-body Syst. Dyn. 42(3), 249–282 (2018)

    Article  MATH  Google Scholar 

  52. Ambrósio, J.: Efficient kinematic joints descriptions for flexible multibody systems experiencing linear and non-linear deformations. Int. J. Numer. Methods Eng. 56, 1771–1793 (2003)

    Article  MATH  Google Scholar 

  53. Masarati, P., Morandini, M.: Intrinsic deformable joints. Multi-body Syst. Dyn. 23, 361–386 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Cardona, A., Geradin, M., Doan, D.B.: Rigid and flexible joint modelling in multibody dynamics using finite elements. Comput. Methods Appl. Mech. Eng. 89(1–3), 395–418 (1991)

    Article  Google Scholar 

  55. Bae, D., Han, J., Choi, J.: An implementation method for constrained flexible multibody dynamics using virtual body and joint. Multi-body Syst. Dyn. 4, 207–226 (2000)

    MATH  Google Scholar 

  56. Gonçalves, J., Ambrósio, J.: Advanced modeling of flexible multibody dynamics using virtual bodies. Comput. Assist. Mech. Eng. Sci. 9(3), 373–390 (2002)

    MATH  Google Scholar 

  57. Mashayekhi, M., Kövecses, J.: A comparative study between the augmented Lagrangian method and the complementarity approach for modeling the contact problem. Multi-body Syst. Dyn. 40(4), 327–345 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. Blumentals, A., Brogliato, B., Bertails-Descoubes, F.: The contact problem in Lagrangian systems subject to bilateral and unilateral constraints, with or without sliding Coulomb’s friction: a tutorial. Multi-body Syst. Dyn. 38(1), 43–76 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zhao, Z., Liu, C.: Contact constraints and dynamical equations in Lagrangian systems. Multi-body Syst. Dyn. 38(1), 77–99 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multi-body Syst. Dyn. 23(2), 165–190 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  61. Kwak, S.D., Blankevoort, L., Ateshian, G.A.: A mathematical formulation for 3D quasi-static multibody models of diarthrodial joints. Comput. Methods Biomech. Biomed. Eng. 3, 41–64 (2000)

    Article  Google Scholar 

  62. Beia, Y., Fregly, B.J.: Multibody dynamic simulation of knee contact mechanics. Med. Eng. Phys. 26(9), 777–789 (2004)

    Article  Google Scholar 

  63. Machado, M., Flores, P., Pimenta Claro, J.C., Ambrósio, J., Silva, M., Completo, A., Lankarani, H.: Development of a planar multibody model of the human knee joint. Nonlinear Dyn. 60(3), 459–478 (2010)

    Article  MATH  Google Scholar 

  64. Anand, V.: Computer Graphics and Geometric Modeling for Engineers. Wiley, New York (1996)

    Google Scholar 

  65. Frenet, F.: Sur les courbes à double courbure. J. Math. Pures Appl. 17, 437–447 (1852)

    Google Scholar 

  66. Machado, M., Flores, P., Ambrósio, J.: A lookup table-based approach for spatial analysis of contact problems. J. Comput. Nonlinear Dyn. 9(1), 1–10 (2014)

    Google Scholar 

  67. Viegas, M., Ambrósio, J., Antunes, P., Magalhães, H.: Dynamics of a roller coaster vehicle. In: Spriyagin, M., Gordon, T., Cole, C., McSweeney, T. (eds.) Proceedings of the 25th International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD 2017), Volume 2, pp. 551–556. CRC Press, Taylor and Francis, London (2017)

    Google Scholar 

  68. Kikuuwe, R., Brogliato, B.: A new representation of systems with frictional unilateral constraints and its Baumgarte-like relaxation. Multi-body Syst. Dyn. 39(3), 267–290 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  69. Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multi-body Syst. Dyn. 24(1), 103–122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  70. Haddouni, M., Acary, V., Garreau, S., Beley, J.-D., Brogliato, B.: Comparison of several formulations and integration methods for the resolution of DAEs formulations in event-driven simulation of nonsmooth frictionless multibody dynamics. Multi-body Syst. Dyn. 41(3), 201–231 (2017)

    Article  MathSciNet  Google Scholar 

  71. Pombo, J., Ambrósio, J.: Application of a wheel–rail contact model to railway dynamics in small radius curved tracks. Multi-body Syst. Dyn. 19(1), 91–114 (2008)

    Article  MATH  Google Scholar 

  72. Pacejka, H.: Tyre and Vehicle Dynamics, 3rd edn. Butterworth-Heinemann, Amsterdam (2012)

    Google Scholar 

  73. Hirschberg, W., Rill, G., Weinfurter, H.: Tire model TMeasy. Veh. Syst. Dyn. 45(1), 101–119 (2007)

    Article  Google Scholar 

  74. Kalker, J.J.: Three-Dimensional Elastic Bodies in Rolling Contact. Springer, Dordrecht (1990)

    Book  MATH  Google Scholar 

  75. Harris, T., Kotzalas, M.: Advanced Concepts of Bearing Technology. CRC Press, Boca Raton (2007)

    Google Scholar 

  76. Lankarani, H., Nikravesh, P.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5(2), 193–207 (1994)

    Google Scholar 

  77. Hunt, K.H., Grossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. ASME J. Appl. Mech. 7, 440–445 (1975)

    Article  Google Scholar 

  78. Ambrósio, J.: Rigid and flexible multibody dynamics tools for the simulation of systems subjected to contact and impact conditions. Eur. J. Solids A Solids. 19(S), 23–44 (2000)

    Google Scholar 

  79. Marques, F., Flores, P., Pimenta Claro, J., Lankarani, H.: A survey of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86(3), 1407–1443 (2016)

    Article  MathSciNet  Google Scholar 

  80. Bengisu, M.T., Akay, A.: Stability of friction-induced vibrations in multi-degree-of-freedom systems. J. Sound Vib. 171, 557–570 (1994)

    Article  MATH  Google Scholar 

  81. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)

    Book  MATH  Google Scholar 

  82. Gupta, P.K.: Advanced Dynamics of Rolling Elements. Springer, New York (1984)

    Book  Google Scholar 

  83. Haines, D., Ollerton, E.: Contact stress distribution on elliptical contact surfaces subjected to radial and tangential forces. Proc. Inst. Mech. Eng. 177, 95–114 (1963)

    Article  Google Scholar 

  84. Magalhães, H., Madeira, J., Ambrósio, J., Pombo, J.: Railway vehicle performance optimization using virtual homologation. Veh. Syst. Dyn. 54(9), 1177–1207 (2016)

    Article  Google Scholar 

  85. Polach, O.: A fast wheel-rail forces calculation computer code. Veh. Syst Dyn. 33, 782–739 (1999)

    Google Scholar 

  86. Ayasse, J., Chollet, H.: Determination of the wheel rail contact patch in semi-Hertzian conditions. Veh. Syst. Dyn. 43, 161–172 (2005)

    Article  Google Scholar 

  87. Sichani, M.S., Enblom, R., Berg, M.: A novel method to model wheel-rail normal contact in vehicle dynamics simulation. Veh. Syst. Dyn. 52, 1752–1764 (2014)

    Article  Google Scholar 

  88. Piotrowski, J., Liu, B., Bruni, S.: The Kalker book of tables for non-Hertzian contact of wheel and rail. Veh. Syst. Dyn. 55(6), 875–901 (2017)

    Article  Google Scholar 

  89. Escalona, J., Aceituno, J.: Modeling wheel-rail contact with pre-calculated lookup tables in arbitrary-geometry tracks with irregularities. In: ASME Proceedings of the 11th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Boston, Massachusetts, USA, August 2–5, Paper No. DETC2015-47306 (2015)

    Google Scholar 

  90. Zhang, J., Wang, Q.: Modeling and simulation of a frictional translational joint with a flexible slider and clearance. Multi-body Syst. Dyn. 38(4), 367–389 (2016)

    Article  MathSciNet  Google Scholar 

  91. Pichler, F., Witteveen, W., Fischer, P.: A complete strategy for efficient and accurate multibody dynamics of flexible structures with large lap joints considering contact and friction. Multi-body Syst. Dyn. 40(4), 407–436 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  92. Wang, G., Qi, Z., Wang, J.: A differential approach for modeling revolute clearance joints in planar rigid. Multi-body Syst. Dyn. 39(4), 311–335 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  93. Masoudi, R., Uchida, T., Vilela, D., Luaces, A., Cuadrado, J., McPhee, J.: A library of computational benchmark problems for the multibody dynamics community. In: Terze, Z. (ed.) Proceedings of ECCOMAS Multibody Dynamics., 1–4 July, pp. 1153–1162. University of Zagreb, Croatia (2013)

    Google Scholar 

  94. Ambrósio, J., Pombo, J.: MUltiBOdy Dynamic Analysis Program – MUBODyn: User’s Manual, Technical Report IDMEC-CPM. Instituto de Engenharia Mecânica, Instituto Superior Técnico, University of Lisbon, Lisbon (2016)

    Google Scholar 

  95. Gear, G.: Numerical simulation of differential-algebraic equations. IEEE Trans. Circ Theory. 18, 89–95 (1981)

    Article  Google Scholar 

  96. Duff, I., Erisman, A., Reid, J.: Direct Methods for Sparse Matrices. Clarendon Press, Oxford (1986)

    MATH  Google Scholar 

  97. Ambrósio, J., Malça, C., Ramalho, A.: Planar roller chain drive dynamics using a cylindrical contact force model. Mech. Based Des. Struct. Mach. 44(1–2), 109–122 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Ambrósio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ambrósio, J. (2019). Selected Challenges in Realistic Multibody Modeling of Machines and Vehicles. In: Zahariev, E., Cuadrado, J. (eds) IUTAM Symposium on Intelligent Multibody Systems – Dynamics, Control, Simulation. IUTAM Bookseries, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-00527-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00527-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00526-9

  • Online ISBN: 978-3-030-00527-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics