Skip to main content

Roll Damping of a Twin-Screw Vessel: Comparison of RANSE-CFD with Established Methods

  • Chapter
  • First Online:
Contemporary Ideas on Ship Stability

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 119))

  • 1202 Accesses

Abstract

A RANSE-CFD method is applied to estimate the roll damping of a modern twin-screw RoPax vessel. The simulations are carried out in full scale and with an undisturbed water surface. The harmonic forced roll motion technique is implemented. The influence of ship speeds, the vertical position of the roll axis and roll amplitudes up to 35\({^\circ }\) are investigated. The interaction between the bilge keels and the ship hull is analyzed. The damping effects of further appendages are discussed. All simulation results are compared with the established method developed by Ikeda and a neural network method based on Blume’s roll damping measurements. The established methods were developed based on studying results of single-screw ships. It can be concluded that both established methods provide acceptable results in certain ranges. For large roll amplitudes, the established methods are out of range and cannot deliver reliable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An overview of the differences between the work in Japan and North America is given in the discussion section of Schmitke’s paper (1978) with Cox, Himeno and Schmitke (pp.41–46).

  2. 2.

    Details of the HERM technique can be found in Handschel and Abdel-Maksoud (2014). A comparison to the widely-used decay technique is given by Wassermann et al. (2016).

  3. 3.

    A detailed description of Ikeda’s method, including the source code in FORTAN, can be downloaded at Ikeda’s Laboratory, Osaka Prefecture University, Japan: http://www.marine.osakafu-u.ac.jp/~lab15/roll_damping.html (accessed: 2016-06-01).

  4. 4.

    see discussion in Blume’s paper (1979) on p. 23

  5. 5.

    The source code of pdstrip, a public domain strip method, can be downloaded: https://sourceforge.net/p/pdstrip (accessed: 2016-06-01).

Abbreviations

\(b_{BK}\) :

Bilge keel breadth

d :

Ship draft

k :

Velocity increment factor at bilge

\(l_{BK}\) :

Bilge keel length

\(r_{BK}\) :

Distance from roll axis to bilge keel

v :

Transverse velocity component at bilge keel

x :

Relative motion of water in crosswise direction to bilge keel

\(A_{BK}\) :

Bilge keel area

\(\hat{B}\) :

Dimensionless roll damping coefficient

B :

Equivalent roll damping coefficient

\(B_{wl}\) :

Waterline breadth of the ship

\(B_{NBK}\) :

Bilge keel damping coefficient, normal drag force part

\(B_{SBK}\) :

Coefficient of hull-pressure damping due to bilge keels

\(B_{W}\) :

Wave damping coefficient

\(C_{D,BK}\) :

Drag coefficient for bilge keel

\(C_{P,BK}\) :

Hull-bilge-keel pressure coefficient due to bilge keels

\(C_{B}\) :

Block coefficient

\(C_{W}\) :

Waterplane coefficient

Fr :

Froude number of forward ship speed

\(F_{NBK}\) :

Normal drag force of the bilge keel

\(KC_{BK}\) :

Local Keulagan-Carpenter-Number for bilge keel

\(L_{OA}\) :

Ship length over all

\(L_{WL}\) :

Waterline length of the ship

RA :

Distance to roll axis over undisturbed water surface

S :

Wetted surface area of the ship

T :

Roll period

\(\alpha \) :

Angle between an orthogonal line to the normal force and line of the lever

\(\sigma \) :

Section area coefficient

\(\phi \) :

Roll angle

\(\phi _H\) :

Heel angle amplitude

\(\rho \) :

Density

\(\omega \) :

Roll frequency

\(\left\{ \right\} _A\) :

Amplitude

References

  • Bassler C.C., Reed A.M. (2009) An Analysis of the Bilge Keel Roll Damping Component Model. In: Proc. 10th International Conference on Stability of Ships and Ocean Vehicles, St Petersburg, Russia

    Google Scholar 

  • Bassler C.C., Reed A.M., Brown A.J. (2010) Characterization of Physical Phenomena for Large Amplitude Ship Roll Motion. In: The 29th American Towing Tank Conference, Annapolis, USA

    Google Scholar 

  • Bertram V. (2011) Practical Ship Hydrodynamics. In: Butterworth Heinemann, 2nd revised edn.

    Google Scholar 

  • Blume P. (1979) Experimentelle Bestimmung von Koeffizienten der wirksamen Rolldaempfung und ihre Anwendung zur Abschaetzung extremer Rollwinkel. In: Ship Technology Research / Schiffstechnik, Vol. 26 (in German)

    Google Scholar 

  • Enger S., Peric M., Peric R. (2010) Simulation of flow around KCS-hull. In: A Workshop on Numerical Ship Hydrodynamics, Proceedings, Vol. II, Gothenburg, Sweden

    Google Scholar 

  • Falzarano J., Somayajula A., Seah R. (2015) An overview of the prediction methods for roll damping of ships. In: Ocean Systems Engineering, Vol. 5.2

    Google Scholar 

  • Gadd G.-E. (1964) Bilge Keels and Bilge Vanes. In: Technical Report of the National Physical Laboratory - Ship Division

    Google Scholar 

  • Handschel S., Köllisch N., Soproni J.P., Abdel-Maksoud M. (2012) A numerical method for estimation of ship roll damping for large amplitudes. In: 29th Symposium on Naval Hydrodynamics, Gothenburg, Sweden

    Google Scholar 

  • Handschel S., Fröhlich M., Abdel-Maksoud M. (2014) Experimental and Numerical Investigation of Ship Roll Damping by Applying the Harmonic Forced Roll Motion Technique. In: 30th Symposium on Naval Hydrodynamics, Tasmania, Australia

    Google Scholar 

  • Handschel S., Abdel-Maksoud M. (2014) Improvement of the Harmonic Excited Roll Motion Technique for Estimating Roll Damping. In: Ship Technology Research / Schiffstechnik, Vol. 61

    Google Scholar 

  • Himeno Y. (1981) Prediction of Ship Roll Damping - A State of the Art. In: Report 239, Dept. Of Naval Architecture and Marine Engineering University of Michigan, Ann Arbor, Michigan, USA

    Google Scholar 

  • Ikeda Y., Himeno Y., Tanaka N. (1976) Ship Roll Damping - Frictional Component and Normal Pressure on Bilge Keel. In: J Kansai SNA, Vol. 161 (in Japanese, English translation available)

    Google Scholar 

  • Ikeda Y., Himeno Y., Tanaka N. (1977a) On eddy-making component of roll damping force on naked hull. In: J Japan SNA, Vol. 142 (in Japanese)

    Google Scholar 

  • Ikeda Y., Himeno Y., Tanaka N. (1977b) On Roll Damping Force of Ship Effect of Hull Surface Pressure Created by Bilge Keels. In: J Kansai SNA, Vol. 165 (in Japanese, English translation available)

    Google Scholar 

  • Ikeda Y., Himeno Y., Tanaka N. (1977c) Components of roll damping of ship at forward speed. In: J Japan SNA, Vol. 143 (in Japanese, English translation available)

    Google Scholar 

  • Ikeda Y., Katayama T., Hasegawa Y., Segawa M. (1994) Roll damping of high speed slender vessels. J Kansai Soc Naval Arch, Vol. 222

    Google Scholar 

  • Ikeda Y. (2004) Prediction Methods of Roll Damping of Ships and Their Application to Determine Optimum Stabilization Devices. Marine Technology, Vol. 41

    Google Scholar 

  • International Towing Tank Conference (2011) Recommended Procedures - Numerical Estimation of Roll Damping. (http://ittc.info/ Accessed: 2016-05-31)

  • Kawahara Y., Maekawa K., Ikeda Y. (2012) A Simple Prediction Formula of Roll Damping of Conventional Cargo Ships on the Basis of Ikeda’s Method and Its Limitations. In: Journal of Shipping and Ocean Engineering, Vol. 2

    Google Scholar 

  • Salas Inzunza M., Mesbahi E., Brink K.-E., Bertram V. (2001) Empirical Roll Damping Formula derived by Artificial Neural Network Applications. Jahrbuch Schiffbautechnische Gesellschaft, Vol. 95

    Google Scholar 

  • Schmitke R.T. (1978) Ship sway, roll, and yaw motions in oblique seas. In: SNAME Transaction of the ASME, Vol. 86

    Google Scholar 

  • Söding H. (1991) Die Wirkung von Rolldämpfungsflossen abhängig von ihrem Einbauort. In: Technical Report, Hamburg University, Germany (in German)

    Google Scholar 

  • Wassermann S., Feder D.-F., Abdel-Maksoud M. (2016) Estimation of ship roll damping - A comparison of the decay and the harmonic excited roll motion technique for a post panamax container ship. In: Ocean Engineering, Vol. 120

    Google Scholar 

  • Zhou Y.-Z. (1987) Die Berechnung der Rolldaempfung von Schiffen. In: Technical Report No. 474, Institut für Schiffbau der Universität Hamburg, Germany (in German)

    Google Scholar 

Download references

Acknowledgements

This project was funded by the German Federal Ministry of Economics and Technology under the aegis of the BMWi-project Best Rolldämpfung within the framework program Schifffahrt und Meerestechnik für das 21. Jahrhundert. The authors would like to thank the project partners: Prof. Dr. B. el Moctar, H. Piehl and R. Kaiser (University Duisburg-Essen), Dr. M. Fröhlich (Potsdam Model Basin) and Dr. V. Shigunov (DNV-GL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moustafa Abdel-Maksoud .

Editor information

Editors and Affiliations

Appendix

Appendix

SIMB\(\mathbf {^3}\)-method: Blume’s roll damping measurements carried out at the Hamburg Ship Model Basin (HSVA) of various ship hulls of the 1970s and before were summarized as artificial neural network. This was developed by Salas Inzunza, Mesbahi, Brink and Bertram Salas Inzunza et al. (2001) based on the measurement results of Blume: we call it here SIMB\(\mathbf {^3}\)-method.

For the artificial neural network, a sigmoid function is used:

$$\begin{aligned} sig(x)=\frac{1}{1+e^{-x}}. \end{aligned}$$
(11.15)

The non dimensional roll damping coefficient

$$\begin{aligned} \hat{B}=\sqrt{\zeta ^2\cdot \frac{2g\overline{GM}^2}{B_{WL}^3\omega _0^2} } \end{aligned}$$
(11.16)

depends on the gravity constant g, metacentric height \(\overline{GM}\), ship breadth \(B_{WL}\), roll resonance frequency \(\omega _0\) and the damping ratio \(\zeta \):

$$\begin{aligned} \zeta =0.26525\cdot sig[xx_1+xx_2+xx_3+xx_4+xx_5+1.121]-0.071725 \end{aligned}$$
(11.17)

with

$$\begin{aligned} \begin{aligned} xx_1&=-0.15923\cdot sig (-0.54784 - 0.35004x_1 - 0.32394x_2 - 0.49683x_3 - 0.7495x_4)\\ xx_2&=1.8997\cdot sig ( 0.48293 - 2.71914x_1 - 5.87083x_2 + 5.55228x_3 - 0.99526x_4)\\ xx_3&=-0.45902\cdot sig (-0.35086 - 0.3666x_1 - 0.21579x_2 - 0.78014x_3 - 1.1742x_4)\\ xx_4&=-2.0167\cdot sig ( 4.2884 - 4.5154x_1 + 1.4302x_2 - 0.30797x_3 - 3.9884x_4)\\ xx_5&=-2.1800\cdot sig (-0.09468 + 3.1056x_1 - 5.4142x_2 -3.1332x_3 +1.7851x_4) \end{aligned} \end{aligned}$$

and

\(x_1=0.16807\cdot (B_{WL}/d) -0.12017\)

\(x_2=1.23456\cdot C_B - 0.28765\)

\(x_3=1.33333\cdot Fr +0.3\)

\(x_4=0.026667\cdot \varphi _a + 0.166667\).

To achieve the roll resonance frequency \(\omega _0=0.435\; [\mathrm{rad/s}]\) of the RoPax vessel, a metacentric height of \(\overline{GM}=2.09\,[\mathrm{m}]\) is selected. The roll radius of gyration of the virtual and ship mass is assumed to be \(i_\Phi =0.4\cdot B_{WL}\;[\mathrm{m}]\).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wassermann, S., Köllisch, N., Abdel-Maksoud, M. (2019). Roll Damping of a Twin-Screw Vessel: Comparison of RANSE-CFD with Established Methods. In: Belenky, V., Spyrou, K., van Walree, F., Almeida Santos Neves, M., Umeda, N. (eds) Contemporary Ideas on Ship Stability. Fluid Mechanics and Its Applications, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-030-00516-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00516-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00514-6

  • Online ISBN: 978-3-030-00516-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics