Skip to main content

Developing Fractions as Multiplicative Relations: A Model of Cognitive Reorganization

  • Chapter
  • First Online:
Constructing Number

Part of the book series: Research in Mathematics Education ((RME))

Abstract

In this chapter, I propose a stance on learning fractions as multiplicative relations through reorganizing knowledge of whole numbers as a viable alternative to the Natural Number Bias (NNB) stance. Such an alternative, rooted in the constructivist theory of knowing and learning, provides a way forward in thinking about and carrying out teaching-learning of fractions, while eschewing a deficit view that seems to underlie the ongoing impasse in this area. I begin with a brief presentation of key aspects of NNB. Then, I discuss key components of the alternative framework, called reflection on activity-effect relationship, which articulates the cognitive process of reorganizing one’s anticipations as two types of reflection that give rise to two stages in constructing fractions as numbers. Capitalizing on this framework, I then delineate cognitive progressions of nine fractional schemes, the first five drawing on operations of iterating units and the last four on recursive partitioning operations. To illustrate the benefits of the alternative, conceptually driven stance, I link it to findings from a recent brain study, which includes significant gains for adult participants and provides a glance (fMRI) into circuitry recruited to process whole number and fraction comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The first and second activities differ, as we often see children selecting 3 to complement 7 into 10.

  2. 2.

    Their work did not include E for effect; in my analysis, such a reorganization will be signified as the change from [G0➔[A0E0]] to [G1➔[A0E1]].

References

  • Behr, M. J., Harel, G., Post, T. R., & Lesh, R. A. (1992). Rational number, ratio, and proportion. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 296–333). New York: Macmillan.

    Google Scholar 

  • Behr, M. J., Wachsmuth, I., Post, T. R., & Lesh, R. A. (1984). Order and equivalence of rational numbers: A clinical teaching experiment. Journal for Research in Mathematics Education, 15(5), 323–341.

    Article  Google Scholar 

  • Bonato, M., Fabbri, S., Umiltà, C., & Zorzi, M. (2007). The mental representation of numerical fractions: Real or Integer? Journal of Experimental Psychology, 33(6), 1410–1419.

    Google Scholar 

  • Confrey, J. (1994). Splitting, similarity, and rate of change: A new approach to multiplication and exponential functions. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 291–330). Albany, NY: State University of New York Press.

    Google Scholar 

  • Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches (3rd ed.). Thousand Oaks, CA: Sage.

    Google Scholar 

  • De Smedt, B., & Verschaffel, L. (2010). Traveling down the road: From cognitive neuroscience to mathematics education...and back. ZDM Mathematics Education, 42, 649–654.

    Article  Google Scholar 

  • Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York: Oxford University.

    Google Scholar 

  • Dougherty, B., & Simon, M. (2014). Elkonin and Davydov curriculum in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 204–207). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Erlwanger, S. H. (1973). Benny’s conception of rules and answers in IPI mathematics. Journal of Children’s Mathematical Behavior, 1(2), 7–26.

    Google Scholar 

  • Gu, L., Huang, R., & Marton, F. (2006). Teaching with variation: A Chinese way of promoting effective mathematics learning. In L. Fan, N.-Y. Wong, J. Cai, & L. Shiqi (Eds.), How Chinese learn mathematics: Perspectives from insiders (pp. 309–347). Singapore: World Scientific.

    Google Scholar 

  • Hackenberg, A. J. (2007). Units coordination and the construction of improper fractions: A revision of the splitting hypothesis. Journal of Mathematical Behavior, 26(1), 27–47.

    Article  Google Scholar 

  • Hackenberg, A. J. (2013). The fractional knowledge and algebraic reasoning of students with the first multiplicative concept. The Journal of Mathematical Behavior, 32(3), 538–563. https://doi.org/10.1016/j.jmathb.2013.06.007

    Article  Google Scholar 

  • Hackenberg, A. J., & Lee, M. Y. (2015). Relationships between students’ fractional knowledge and equation writing. Journal for Research in Mathematics Education, 46(2), 196–243.

    Article  Google Scholar 

  • Hackenberg, A. J., & Tillema, E. S. (2009). Students’ whole number multiplicative concepts: A critical constructive resource for fraction composition schemes. The Journal of Mathematical Behavior, 28(1), 1–18. https://doi.org/10.1016/j.jmathb.2009.04.004

    Article  Google Scholar 

  • Huang, R., Miller, D. L., & Tzur, R. (2015). Mathematics teaching in a Chinese classroom: A hybrid-model analysis of opportunities for students’ learning. In L. Fan, N.-Y. Wong, J. Cai, & S. Li (Eds.), How Chinese teach mathematics: Perspectives from insiders (pp. 73–110). Singapore: World Scientific.

    Chapter  Google Scholar 

  • Hunt, J. H., Tzur, R., & Westenskow, A. (2016). Evolution of unit fraction conceptions in two fifth-graders with a learning disability: An exploratory study. Mathematical Thinking and Learning, 18(3), 182–208. https://doi.org/10.1080/10986065.2016.1183089

    Article  Google Scholar 

  • Hunt, J. H., & Tzur, R. (2017). Where is difference? Processes of mathematical remediation through a constructivist lens. Journal of Mathematical Behavior, 47, 62–76. https://doi.org/10.1016/j.jmathb.2017.06.007

    Article  Google Scholar 

  • Ischebeck, A., Schocke, M., & Delazer, M. (2009). The processing and representation of fractions within the brain An fMRI investigation. NeuroImage, 47, 403–413.

    Article  Google Scholar 

  • Izsák, A., Jacobson, E., de Araujo, Z., & Orrill, C. H. (2012). Measuring mathematical knowledge for teaching fractions with drawn quantities. Journal for Research in Mathematics Education, 43(4), 391–427.

    Article  Google Scholar 

  • Jacob, S. N., & Nieder, A. (2009). Notation-independent representation of fractions in the human parietal cortex. The Journal of Neuroscience, 29(14), 4652–4657.

    Article  Google Scholar 

  • Jin, X., & Tzur, R. (2011a). ‘Bridging’: An assimilation- and ZPD-enhancing practice in Chinese pedagogy. Paper presented at the The 91st Annual Meeting of the National Council of Teachers of Mathematics (Research Pre-Session).

    Google Scholar 

  • Jin, X., & Tzur, R. (2011b). Progressive incorporation of new into known: A perspective on and practice of mathematics learning and teaching in China. Paper presented at the Annual Conference of the Association of Mathematics Teacher Educators, Irvine, CA.

    Google Scholar 

  • Lamon, S. J. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 629–667). Charlotte, NC: Information Age.

    Google Scholar 

  • Leikin, R., & Tzur, R. (2015). Discussion and concluding remarks to Research Forum: Interweaving mathematics education and cognitive neuroscience. In K. Beswick, T. Muir, & J. Wells (Eds.), Proceedings of 39th Psychology of Mathematics Education Conference (Vol. 1, pp. 115–116). Hobart: PME.

    Google Scholar 

  • Mason, J. (2008). Making use of children’s powers to produce algebraic thinking. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 57–94). New York: Lawrence Erlbaum; National Council of Teachers of Mathematics.

    Google Scholar 

  • Mohamed, F. B., & Faro, S. H. (2010). Neuroanatomical atlas. In S. H. Faro & F. B. Mohamed (Eds.), BOLD fMRI: A guide to functional imaging for neuroscientists (pp. 277–285). New York: Springer Science + Business Media.

    Chapter  Google Scholar 

  • Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature Reviews, 215, 1519–1520.

    Article  Google Scholar 

  • Murata, A., & Fuson, K. (2006). Teaching as assisting individual constructive paths within an interdependent class learning zone: Japanese first graders learning to add using 10. Journal for Research in Mathematics Education, 37(5), 421–456.

    Google Scholar 

  • Ni, Y., & Zhou, Y. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40, 27–52.

    Article  Google Scholar 

  • Norton, A., & Boyce, S. (2013). A cognitive core for common state standards. The Journal of Mathematical Behavior, 32(2), 266–279. https://doi.org/10.1016/j.jmathb.2013.01.001

    Article  Google Scholar 

  • Norton, A., Boyce, S., Ulrich, C., & Phillips, N. (2015). Students’ units coordination activity: A cross-sectional analysis. Journal of Mathematical Behavior, 39(1), 51–66.

    Article  Google Scholar 

  • Norton, A., & Hackenberg, A. J. (2010). Continuing research on students’ fraction schemes. In L. P. Steffe & J. Olive (Eds.), Children’s fractional knowledge (pp. 341–352). New York: Springer.

    Chapter  Google Scholar 

  • Norton, A., & Wilkins, J. L. M. (2010). Students partitive reasoning. Journal of Mathematical Behavior, 29, 181–194.

    Article  Google Scholar 

  • Norton, A., & Wilkins, J. L. M. (2012). The splitting group. Journal for Research in Mathematics Education, 43(5), 557–583.

    Article  Google Scholar 

  • Obersteiner, A., Van Dooren, W., Van Hoof, J., & Verschaffel, L. (2013). The natural number bias and magnitude representation in fraction comparison by expert mathematicians. Learning and Instruction, 28, 64–72.

    Article  Google Scholar 

  • Olive, J. (1999). From fractions to rational numbers of arithmetic: A reorganization hypothesis. Mathematical Thinking and Learning, 1, 279–314. https://doi.org/10.1207/s15327833mtl0104_2

    Article  Google Scholar 

  • Piaget, J. (1971). Biology and knowledge. (B. Walsh, Trans. Chicago: The University of Chicago.

    Google Scholar 

  • Piaget, J. (1985). The equilibration of cognitive structures: The central problem of intellectual development. (T. Brown & K. J. Thampy, Trans. Chicago: The University of Chicago.

    Google Scholar 

  • Piaget, J., Inhelder, B., & Szeminska, A. (1960). The child’s conception of geometry. (E. A. Lunzer, Trans. New York: W. W. Norton.

    Google Scholar 

  • Pirie, S. E. B., & Kieren, T. E. (1994). Growth in mathematical understanding: How can we characterize it and how can we represent it? Educational Studies in Mathematics, 26(2-3), 165–190.

    Article  Google Scholar 

  • Sáenz-Ludlow, A. (1994). Michael’s fraction schemes. Journal for Research in Mathematics Education, 25, 50–85.

    Article  Google Scholar 

  • Shtulman, A., & Valcarcel, J. (2012). Scientific knowledge suppresses but does not supplant earlier intuitions. Cognition, 124(2), 209–215.

    Article  Google Scholar 

  • Sidney, P. G., & Alibali, M. W. (2015). Making connections in math: Activating a prior knowledge analogue matters for learning. Journal of Cognition and Development, 16(1), 160–185.

    Article  Google Scholar 

  • Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114–145.

    Article  Google Scholar 

  • Simon, M. A. (2012). Extending the coordination of cognitive and social perspectives. PNA, 6(2), 43–49.

    Article  Google Scholar 

  • Simon, M. A. (2015). Learning through activity: Analyzing and promoting mathematics conceptual learning. In K. Beswick, T. Muir, & J. Wells (Eds.), Proceedings of 39th Psychology of Mathematics Education Conference (Vol. 1, pp. 51–65). Hobart: PME.

    Google Scholar 

  • Simon, M. A., Kara, M., Norton, A., & Placa, N. (in press). Fostering construction of a meaning for multiplication that subsumes whole-number and fraction multiplication: A study of the Learning Through Activity research program. Journal of Mathematical Behavior.

    Google Scholar 

  • Simon, M. A., Placa, N., & Avitzur, A. (2016). Participatory and anticipatory stages of mathematical concept learning: Further empirical and theoretical development. Journal for Research in Mathematics Education, 47(1), 63–93.

    Article  Google Scholar 

  • Simon, M. A., Placa, N., & Avitzur, A. (in press). Two stages of mathematical concept learning: Further empirical and theoretical development. Journal of Mathematical Behavior.

    Google Scholar 

  • Simon, M. A., Placa, N., Kara, M., & Avitzur, A. (in press). Promoting a concept of fraction-as-measure: A study of learning through activity. Journal of Mathematical Behavior.

    Google Scholar 

  • Simon, M. A., & Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual learning: An elaboration of the hypothetical learning trajectory. Mathematical Thinking and Learning, 6(2), 91–104.

    Article  Google Scholar 

  • Simon, M. A., Tzur, R., Heinz, K., & Kinzel, M. (2004). Explicating a mechanism for conceptual learning: Elaborating the construct of reflective abstraction. Journal for Research in Mathematics Education, 35(3), 305–329.

    Article  Google Scholar 

  • Skemp, R. R. (1979). Intelligence, Learning, and Action. New York: Wiley.

    Google Scholar 

  • Steffe, L. P. (1992). Schemes of action and operation involving composite units. Learning and Individual Differences, 4(3), 259–309. https://doi.org/10.1016/1041-6080(92)90005-Y

    Article  Google Scholar 

  • Steffe, L. P. (1995). Alternative epistemologies: An educator’s perspective. In L. P. Steffe & J. Gale (Eds.), Constructivism in education (pp. 489–523). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Steffe, L. P. (2010a). Articulation of the reorganization hypothesis. In L. P. Steffe & J. Olive (Eds.), Children’s fractional knowledge (pp. 49–74). New York: Springer.

    Chapter  Google Scholar 

  • Steffe, L. P. (2010b). Operations that produce numerical counting schemes. In L. P. Steffe & J. Olive (Eds.), Children’s fractional knowledge (pp. 27–47). New York: Springer.

    Chapter  Google Scholar 

  • Steffe, L. P. (2010c). The unit composition and the commensurate schemes. In L. P. Steffe & J. Olive (Eds.), Children’s fractional knowledge (pp. 123–169). New York: Springer.

    Chapter  Google Scholar 

  • Steffe, L. P., Liss, D. R. I., & Lee, H. Y. (2014). On the operations that generate intensive quantity. In L. P. Steffe, K. C. Moore, & L. L. Hatfield (Eds.), Epistemic algebraic students: Emerging models of students’ algebraic knowing (Vol. 4, pp. 49–79). University of Wyoming: Wyoming Institute for the Study and Development of Mathematical Education (WISDOMe).

    Google Scholar 

  • Steffe, L. P., & Olive, J. (2010). Children’s fractional knowledge. New York: Springer.

    Book  Google Scholar 

  • Steffe, L. P., Thompson, P. W., & von Glasersfeld, E. (2000). Teaching experiment methodology: Underlying principles and essential elements. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 267–306). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Steffe, L. P., & Ulrich, C. (2010). Equipartitioning Operations for Connected Numbers: Their Use and Interiorization. In L. P. Steffe & J. Olive (Eds.), Children’s fractional knowledge (pp. 225–275). New York: Springer.

    Chapter  Google Scholar 

  • Steffe, L. P., & von Glasersfeld, E. (1985). Helping children to conceive of number. Recherches en Didactique des Mathematiques, 6(2/3), 269–303.

    Google Scholar 

  • Streefland, L. (1991). Fractions in realistic mathematics education: A paradigm of developmental research (Vol. 8, 1st ed.). Dordrecht: Kluwer.

    Book  Google Scholar 

  • Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical.

    Google Scholar 

  • Thomas, M. O. J., Wilson, A. J., Corballis, M. C., Lim, V. K., & Yoon, C. (2010). Evidence from cognitive neuroscience for the role of graphical and algebraic representations in understanding function. ZDM Mathematics Education, 42, 607–619.

    Article  Google Scholar 

  • Thompson, P. W., Carlson, M., Byerley, C., & Hatfield, N. (2013). Thinking with magnitudes: Fostering students’ generalized reasoning in algebra. Paper presented at the Epistemic Algebraic Students, University of Georgia, Athens, GA.

    Google Scholar 

  • Tzur, R. (1996). Interaction and children’s fraction learning. Ann Arbor, MI: UMI Dissertation Services (Bell & Howell).

    Google Scholar 

  • Tzur, R. (1999). An integrated study of children’s construction of improper fractions and the teacher’s role in promoting that learning. Journal for Research in Mathematics Education, 30(4), 390–416.

    Article  Google Scholar 

  • Tzur, R. (2000). An integrated research on children’s construction of meaningful, symbolic, partitioning-related conceptions, and the teacher’s role in fostering that learning. Journal of Mathematical Behavior, 18(2), 123–147.

    Article  Google Scholar 

  • Tzur, R. (2004). Teacher and students’ joint production of a reversible fraction conception. Journal of Mathematical Behavior, 23, 93–114.

    Article  Google Scholar 

  • Tzur, R. (2011). Can dual processing theories of thinking inform conceptual learning in mathematics. The Mathematics Enthusiast, 8(3), 597–636.

    Article  Google Scholar 

  • Tzur, R. (2014). Reorganization of anticipation: A hard core principle in Steffe’s research program on children’s progression from numerical to algebraic reasoning (Vol. 4, pp. 175-197). University of Wyoming: Wyoming Institute for the Study and Development of Mathematical Education (WISDOMe).

    Google Scholar 

  • Tzur, R., & Depue, B. E. (2014a). Brain processing of whole-number vs. fraction comparisons: Impact of constructivist-based task design on reaction time and distance effect. Paper presented at the Annual Meeting of the American Educational Research Association, Philadelphia, PA.

    Google Scholar 

  • Tzur, R., & Depue, B. E. (2014b). Conceptual and brain processing of unit fraction comparisons: A CogNeuro-MathEd study. In S. Oesterle, C. Nicol, P. Liljedahl, & D. Allan (Eds.), Proceedings of the Joint Meeting of PME 38 and PME-NA 36 (Vol. 5, pp. 297–304). Vancouver: PME.

    Google Scholar 

  • Tzur, R., Hodkowski, N. M., & Uribe, M. (2016). A grade-4 teacher’s mathematics: The case of Annie’s understanding of decimal fractions. In Proceedings of the 14th Annual Hawaii International Conference on Education. Honolulu, HI: Author.

    Google Scholar 

  • Tzur, R., & Hunt, J. H. (2015). Iteration: unit fraction knowledge and the French fry task. Teaching Children Mathematics, 22(3), 148–157.

    Article  Google Scholar 

  • Tzur, R., Johnson, H. L., McClintock, E., Kenney, R. H., Xin, Y. P., Si, L., … Jin, X. (2013). Distinguishing schemes and tasks in children’s development of multiplicative reasoning. PNA, 7(3), 85–101.

    Article  Google Scholar 

  • Tzur, R., & Lambert, M. A. (2011). Intermediate participatory stages as Zone of Proximal Development correlate in constructing counting-on: A plausible conceptual source for children’s transitory ‘regress’ to counting-all. Journal for Research in Mathematics Education, 42(5), 418–450.

    Article  Google Scholar 

  • Tzur, R., & Simon, M. A. (2004). Distinguishing two stages of mathematics conceptual learning. International Journal of Science and Mathematics Education, 2, 287–304. https://doi.org/10.1007/s10763-004-7479-4

    Article  Google Scholar 

  • Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2012). Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathematical Behavior, 31(3), 344–355. https://doi.org/10.1016/j.jmathb.2012.02.001

    Article  Google Scholar 

  • Van Hoof, J., Janssen, R., Verschaffel, L., & Van Dooren, W. (2015). Inhibiting natural knowledge in fourth graders: Towards a comprehensive test instrument. ZDM Mathematics Education, 4, 849–857.

    Article  Google Scholar 

  • Van Hoof, J., Lijnen, T., Verschaffel, L., & Van Dooren, W. (2013). Are secondary school students still hampered by the natural number bias? A reaction time study on fraction comparison tasks. Research in Mathematics Education, 15(2), 154–164.

    Article  Google Scholar 

  • Van Hoof, J., Verschaffel, L., & Van Dooren, W. (2016). The natural number bias: An attempt to measure and map its development along primary and secondary education. In C. Csíkos, A. Rausch, & J. Szitányi (Eds.), Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 387–391). Szeged: University of Szeged.

    Google Scholar 

  • Verschaffel, L., Greer, B., & DeCorte, E. (2007). Whole number concepts and operations. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 557–627). Charlotte, NC: Information Age.

    Google Scholar 

  • von Glasersfeld, E. (1995). Radical constructivism: A way of knowing and learning. Washington, DC: Falmer.

    Google Scholar 

  • Vygotsky, L. S. (1986). Thought and language. Cambridge, MA: MIT.

    Google Scholar 

  • Zinchenko, V. P. (2002). From classical to organic psychology: In commemoration of the centennial of Lev Vygotsky’s birth. In D. Robbins & A. Stetsenko (Eds.), Voices within Vygotsky’s non-classical psychology: Past, present, future (pp. 3–26). New York: Nova Science.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Tzur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tzur, R. (2019). Developing Fractions as Multiplicative Relations: A Model of Cognitive Reorganization. In: Norton, A., Alibali, M.W. (eds) Constructing Number. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-030-00491-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00491-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00490-3

  • Online ISBN: 978-3-030-00491-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics