Skip to main content

Pathology and Molecular Pathogenesis of Burkitt Lymphoma and Lymphoblastic Lymphoma

  • Chapter
  • First Online:
Aggressive Lymphomas

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

Abstract

Burkitt lymphoma and lymphoblastic lymphoma are highly aggressive lymphomas mostly occurring in children, adolescents, and young adults. They account for approximately 4–5% of all non-Hodgkin lymphomas in Western countries. These B-cell neoplasms were frequently grouped together in the past, due to their fast-growing clinical behavior, related to a short doubling time, and their frequent presentation as acute leukemia. Burkitt leukemia was formerly classified as a lymphoblastic leukemia with L3 morphology according to the FAB classification. However, the biological characterization, especially the immunophenotype of these lymphomas, showed that Burkitt leukemia/lymphoma and lymphoblastic leukemia/lymphoma correspond to radically different stages of lymphoid maturation, with a different cell of origin, justifying their classification as separate entities in the WHO classification: lymphoblastic lymphoma is a B- or T-cell precursor lymphoid neoplasm, while Burkitt lymphoma is a mature B-cell neoplasm. As with other subtypes of lymphomas, emerging data from gene expression profiling, next-generation sequencing, and related techniques help to define these entities more precisely and to better understand their pathogenesis in order to identify potential new rational therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett JM, Catovsky D, Daniel MT, et al. French-American-British (FAB Cooperative Group) Proposals for the classification of the acute leukaemias. Br J Haematol. 1976;33:451–8.

    Article  CAS  PubMed  Google Scholar 

  2. Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon, France: IARC Press; 2008.

    Google Scholar 

  3. Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC Press; 2017.

    Google Scholar 

  4. Basso K, Dalla-Favera R. Germinal centres and B cell lymphomagenesis. Nat Rev Immunol. 2015;15(3):172–84. Review.

    Article  CAS  PubMed  Google Scholar 

  5. Dominguez-Sola D, Victora GD, Ying CY, Phan RT, Saito M, Nussenzweig MC, Dalla-Favera R. The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry. Nat Immunol. 2012;13(11):1083–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Victora GD, Dominguez-Sola D, Holmes AB, Deroubaix S, Dalla-Favera R, Nussenzweig MC. Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas. Blood. 2012;120(11):2240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ambrosio MR, Lo Bello G, Amato T, Lazzi S, Piccaluga PP, Leoncini L, Bellan C. The cell of origin of Burkitt lymphoma: germinal centre or not germinal centre? Histopathology. 2016;69(5):885–6.

    Article  PubMed  Google Scholar 

  8. Rowe M, Kelly GL, Bell AI, Rickinson AB. Burkitt’s lymphoma: the Rosetta Stone deciphering Epstein-Barr virus biology. Semin Cancer Biol. 2009;19(6):377–88.

    Google Scholar 

  9. Magrath I. Epidemiology: clues to the pathogenesis of Burkitt lymphoma. Br J Haematol. 2012;156(6):744–56.

    Article  CAS  PubMed  Google Scholar 

  10. Burkitt D. A sarcoma involving the jaws in African children. Br J Surg. 1958;46(197):218–23.

    Article  CAS  PubMed  Google Scholar 

  11. Magrath I. Denis Burkitt and the African lymphoma. Ecancermedicalscience. 2009;3:159.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Epstein A. Burkitt lymphoma and the discovery of Epstein-Barr virus. Br J Haematol. 2012;156(6):777–9.

    Article  PubMed  Google Scholar 

  13. Van Krieken JHJM. Encyclopedia of pathology. Berlin Heidelberg: Springer-Verlag; 2014.

    Google Scholar 

  14. Ambrosio MR, Piccaluga PP, Ponzoni M, Rocca BJ, Malagnino V, Onorati M, De Falco G, Calbi V, Ogwang M, Naresh KN, Pileri SA, Doglioni C, Leoncini L, Lazzi S. The alteration of lipid metabolism in Burkitt lymphoma identifies a novel marker: adipophilin. PLoS One. 2012;7(8):e44315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Disanto MG, Ambrosio MR, Rocca BJ, Ibrahim HA, Leoncini L, Naresh KN. Optimal minimal panels of immunohistochemistry for diagnosis of B-cell lymphoma for application in countries with limited resources and for triaging cases before referral to specialist centers. Am J Clin Pathol. 2016;145(5):687–95.

    Article  PubMed  Google Scholar 

  16. Naresh KN, Ibrahim HA, Lazzi S, Rince P, Onorati M, Ambrosio MR, Bilhou-Nabera C, Amen F, Reid A, Mawanda M, Calbi V, Ogwang M, Rogena E, Byakika B, Sayed S, Moshi E, Mwakigonja A, Raphael M, Magrath I, Leoncini L. Diagnosis of Burkitt lymphoma using an algorithmic approach—applicable in both resource-poor and resource-rich countries. Br J Haematol. 2011;154(6):770–6.

    Article  PubMed  Google Scholar 

  17. Jaffe ES, Arber DA, Campo E, Lee Harris N, Quintanilla-Fend L. Hematopathology. 2nd ed. New York: Elsevier; 2016.

    Google Scholar 

  18. De Falco G, Ambrosio MR, Fuligni F, Onnis A, Bellan C, Rocca BJ, Navari M, Etebari M, Mundo L, Gazaneo S, Facchetti F, Pileri SA, Leoncini L, Piccaluga PP. Burkitt lymphoma beyond MYC translocation: N-MYC and DNA methyltransferases dysregulation. BMC Cancer. 2015;15:668.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Nguyen L, Papenhausen P, Shao H. The role of c-MYC in B-cell lymphomas: diagnostic and molecular aspects. Genes (Basel). 2017;8(4):E116.

    Article  CAS  Google Scholar 

  20. Vallespinós M, Fernández D, Rodríguez L, Alvaro-Blanco J, Baena E, Ortiz M, Dukovska D, Martínez D, Rojas A, Campanero MR, Moreno de Alborán I. B Lymphocyte commitment program is driven by the proto-oncogene c-Myc. J Immunol. 2011;186(12):6726–36.

    Article  PubMed  CAS  Google Scholar 

  21. Dave SS, Fu K, Wright GW, Lam LT, Kluin P, Boerma EJ, Greiner TC, Weisenburger DD, Rosenwald A, Ott G, Müller-Hermelink HK, Gascoyne RD, Delabie J, Rimsza LM, Braziel RM, Grogan TM, Campo E, Jaffe ES, Dave BJ, Sanger W, Bast M, Vose JM, Armitage JO, Connors JM, Smeland EB, Kvaloy S, Holte H, Fisher RI, Miller TP, Montserrat E, Wilson WH, Bahl M, Zhao H, Yang L, Powell J, Simon R, Chan WC, Staudt LM, Lymphoma/Leukemia Molecular Profiling Project. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med. 2006;354(23):2431–42.

    Google Scholar 

  22. Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S, Barth TF, Bernd HW, Cogliatti SB, Dierlamm J, Feller AC, Hansmann ML, Haralambieva E, Harder L, Hasenclever D, Kühn M, Lenze D, Lichter P, Martin-Subero JI, Möller P, Müller-Hermelink HK, Ott G, Parwaresch RM, Pott C, Rosenwald A, Rosolowski M, Schwaenen C, Stürzenhofecker B, Szczepanowski M, Trautmann H, Wacker HH, Spang R, Loeffler M, Trümper L, Stein H, Siebert R, Molecular Mechanisms in Malignant Lymphomas Network Project of the Deutsche Krebshilfe. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med. 2006;354(23):2419–30.

    Google Scholar 

  23. Leucci E, Cocco M, Onnis A, De Falco G, van Cleef P, Bellan C, van Rijk A, Nyagol J, Byakika B, Lazzi S, Tosi P, van Krieken H, Leoncini L. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation. J Pathol. 2008;216(4):440–50.

    Article  CAS  PubMed  Google Scholar 

  24. Salaverria I, Martin-Guerrero I, Wagener R, Kreuz M, Kohler CW, Richter J, Pienkowska-Grela B, Adam P, Burkhardt B, Claviez A, Damm-Welk C, Drexler HG, Hummel M, Jaffe ES, Küppers R, Lefebvre C, Lisfeld J, Löffler M, Macleod RA, Nagel I, Oschlies I, Rosolowski M, Russell RB, Rymkiewicz G, Schindler D, Schlesner M, Scholtysik R, Schwaenen C, Spang R, Szczepanowski M, Trümper L, Vater I, Wessendorf S, Klapper W, Siebert R, Molecular Mechanisms in Malignant Lymphoma Network Project; Berlin-Frankfurt-Münster Non-Hodgkin Lymphoma Group. A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma. Blood. 2014;123(8):1187–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Havelange V, Ameye G, Théate I, Callet-Bauchu E, Lippert E, Luquet I, Raphaël M, Vikkula M, Poirel HA. The peculiar 11q-gain/loss aberration reported in a subset of MYC-negative high-grade B-cell lymphomas can also occur in a MYC-rearranged lymphoma. Cancer Genet. 2016a;209(3):117–8.

    Article  CAS  PubMed  Google Scholar 

  26. Havelange V, Ameye G, Callet-Bauchu E, Dastugue N, Barin C, Penther D, Michaux L, Hagemeijer A, Mugneret F, Poirel HA. Patterns of genomic aberrations suggest that Burkitt lymphomas with complex karyotype remain different from the other aggressive B-cell lymphomas with MYC rearrangement. Genes Chromosomes Cancer. 2013;52(1):81–92.

    Article  CAS  PubMed  Google Scholar 

  27. Poirel HA, Cairo MS, Heerema NA, Swansbury J, Aupérin A, Launay E, Sanger WG, Talley P, Perkins SL, Raphael M, McCarthy K, Sposto R, Gerrard M, Bernheim A, Patte C, on behalf of the FAB LMB 96 International Study Committee. Specific cytogenetic abnormalities are associated with a significantly inferior outcome in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: results of the FAB/LMB 96 international study. Leukemia. 2009;23(2):323–31.

    Article  CAS  PubMed  Google Scholar 

  28. Piccaluga PP, De Falco G, Kustagi M, Gazzola A, Agostinelli C, Tripodo C, Leucci E, Onnis A, Astolfi A, Sapienza MR, Bellan C, Lazzi S, Tumwine L, Mawanda M, Ogwang M, Calbi V, Formica S, Califano A, Pileri SA, Leoncini L. Gene expression analysis uncovers similarity and differences among Burkitt lymphoma subtypes. Blood. 2011;117(13):3596–608.

    Article  CAS  PubMed  Google Scholar 

  29. Lenze D, Leoncini L, Hummel M, Volinia S, Liu CG, Amato T, De Falco G, Githanga J, Horn H, Nyagol J, Ott G, Palatini J, Pfreundschuh M, Rogena E, Rosenwald A, Siebert R, Croce CM, Stein H. The different epidemiologic subtypes of Burkitt lymphoma share a homogenous micro RNA profile distinct from diffuse large B-cell lymphoma. Leukemia. 2011;25(12):1869–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Havelange V, Pepermans X, Ameye G, Théate I, Callet-Bauchu E, Barin C, Penther D, Lippert E, Michaux L, Mugneret F, Dastugue N, Raphaël M, Vikkula M, Poirel HA. Genetic differences between pediatric and adult Burkitt lymphomas. Br J Haematol. 2016b;173(1):137–44.

    Article  CAS  PubMed  Google Scholar 

  31. Love C, Sun Z, Jima D, Li G, Zhang J, Miles R, Richards KL, Dunphy CH, Choi WW, Srivastava G, Lugar PL, Rizzieri DA, Lagoo AS, Bernal-Mizrachi L, Mann KP, Flowers CR, Naresh KN, Evens AM, Chadburn A, Gordon LI, Czader MB, Gill JI, Hsi ED, Greenough A, Moffitt AB, McKinney M, Banerjee A, Grubor V, Levy S, Dunson DB, Dave SS. The genetic landscape of mutations in Burkitt lymphoma. Nat Genet. 2012;44(12):1321–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M, Wright G, Shaffer AL, Hodson DJ, Buras E, Liu X, Powell J, Yang Y, Xu W, Zhao H, Kohlhammer H, Rosenwald A, Kluin P, Müller-Hermelink HK, Ott G, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Ogwang MD, Reynolds SJ, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Pittaluga S, Wilson W, Waldmann TA, Rowe M, Mbulaiteye SM, Rickinson AB, Staudt LM. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490(7418):116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schmitz R, Ceribelli M, Pittaluga S, Wright G, Staudt LM. Oncogenic mechanisms in Burkitt lymphoma. Cold Spring Harb Perspect Med. 2014;4(2):a014282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Richter J, Schlesner M, Hoffmann S, Kreuz M, Leich E, Burkhardt B, Rosolowski M, Ammerpohl O, Wagener R, Bernhart SH, Lenze D, Szczepanowski M, Paulsen M, Lipinski S, Russell RB, Adam-Klages S, Apic G, Claviez A, Hasenclever D, Hovestadt V, Hornig N, Korbel JO, Kube D, Langenberger D, Lawerenz C, Lisfeld J, Meyer K, Picelli S, Pischimarov J, Radlwimmer B, Rausch T, Rohde M, Schilhabel M, Scholtysik R, Spang R, Trautmann H, Zenz T, Borkhardt A, Drexler HG, Möller P, MacLeod RA, Pott C, Schreiber S, Trümper L, Loeffler M, Stadler PF, Lichter P, Eils R, Küppers R, Hummel M, Klapper W, Rosenstiel P, Rosenwald A, Brors B, Siebert R, MMML-Seq Project ICGC. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat Genet. 2012;44:1316–20.

    Article  CAS  PubMed  Google Scholar 

  35. Greenough A, Dave SS. New clues to the molecular pathogenesis of Burkitt lymphoma revealed through next-generation sequencing. Curr Opin Hematol. 2014;21(4):326–32.

    Article  CAS  PubMed  Google Scholar 

  36. Abate F, Ambrosio MR, Mundo L, Laginestra MA, Fuligni F, Rossi M, Zairis S, Gazaneo S, De Falco G, Lazzi S, Bellan C, Rocca BJ, Amato T, Marasco E, Etebari M, Ogwang M, Calbi V, Ndede I, Patel K, Chumba D, Piccaluga PP, Pileri S, Leoncini L, Rabadan R. Distinct viral and mutational spectrum of endemic burkitt lymphoma. PLoS Pathog. 2015;11(10):e1005158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Küppers R. Mechanisms of B-cell lymphoma 7pathogenesis. Nat Rev Cancer. 2005;5(4):251–62. Review.

    Article  PubMed  CAS  Google Scholar 

  38. Sander S, Calado DP, Srinivasan L, Köchert K, Zhang B, Rosolowski M, Rodig SJ, Holzmann K, Stilgenbauer S, Siebert R, Bullinger L, Rajewsky K. Synergy between PI3K signaling and MYC in Burkitt lymphomagenesis. Cancer Cell. 2012;22(2):167–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amato T, Abate F, Piccaluga P, Iacono M, Fallerini C, Renieri A, De Falco G, Ambrosio MR, Mourmouras V, Ogwang M, Calbi V, Rabadan R, Hummel M, Pileri S, Leoncini L, Bellan C. Clonality analysis of immunoglobulin gene rearrangement by next-generation sequencing in endemic Burkitt lymphoma suggests antigen drive activation of BCR as opposed to sporadic Burkitt lymphoma. Am J Clin Pathol. 2016;145(1):116–27.

    Article  CAS  PubMed  Google Scholar 

  40. Cai Q, Medeiros LJ, Xu X, Young KH. MYC-driven aggressive B-cell lymphomas: biology, entity, differential diagnosis and clinical management. Oncotarget. 2015;6(36):38591–616.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Moormann AM, Snider CJ, Chelimo K. The company malaria keeps: how co-infection with Epstein-Barr virus leads to endemic Burkitt lymphoma. Curr Opin Infect Dis. 2011;24:435–41.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rochford R, Cannon MJ, Moormann AM. Endemic Burkitt’s lymphoma: a polymicrobial disease? Nat Rev Microbiol. 2005;3(2):182–7.

    Google Scholar 

  43. Thorley-Lawson DA, Hawkins JB, Tracy SI, Shapiro M. The pathogenesis of Epstein-Barr virus persistent infection. Curr Opin Virol. 2013;3:227–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ambrosio MR, Navari M, Di Lisio L, Leon EA, Onnis A, Gazaneo S, Mundo L, Ulivieri C, Gomez G, Lazzi S, Piris MA, Leoncini L, De Falco G. The Epstein Barr-encoded BART-6-3p microRNA affects regulation of cell growth and immuno response in Burkitt lymphoma. Infect Agent Cancer. 2014a;14(9):12.

    Article  CAS  Google Scholar 

  45. Ambrosio MR, De Falco G, Gozzetti A, Rocca BJ, Amato T, Mourmouras V, Gazaneo S, Mundo L, Candi V, Piccaluga PP, Cusi MG, Leoncini L, Lazzi S. Plasmablastic transformation of a pre-existing plasmacytoma: a possible role for reactivation of Epstein Barr virus infection. Haematologica. 2014b;99(11):e235–7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Arvey A, Ojesina AI, Pedamallu CS, Ballon G, Jung J, et al. The tumor virus landscape of AIDS-related lymphomas. Blood. 2015;125:e14–22.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Piccaluga PP, Navari M, De Falco G, Ambrosio MR, Lazzi S, Fuligni F, Bellan C, Rossi M, Sapienza MR, Laginestra MA, Etebari M, Rogena EA, Tumwine L, Tripodo C, Gibellini D, Consiglio J, Croce CM, Pileri SA, Leoncini L. Virus-encoded microRNA contributes to the molecular profile of EBV-positive Burkitt lymphomas. Oncotarget. 2016;7(1):224–40.

    Article  PubMed  Google Scholar 

  48. Navari M, Etebari M, De Falco G, Ambrosio MR, Gibellini D, Leoncini L, Piccaluga PP. The presence of Epstein-Barr virus significantly impacts the transcriptional profile in immunodeficiency-associated Burkitt lymphoma. Front Microbiol. 2015;6:556.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Navari M, Fuligni F, Laginestra MA, Etebari M, Ambrosio MR, Sapienza MR, Rossi M, De Falco G, Gibellini D, Tripodo C, Pileri SA, Leoncini L, Piccaluga PP. Molecular signature of Epstein Barr virus-positive Burkitt lymphoma and post-transplant lymphoproliferative disorder suggest different roles for Epstein Barr virus. Front Microbiol. 2014;5:728.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mundo L, Ambrosio MR, Picciolini M, Lo Bello G, Gazaneo S, Del Porro L, Lazzi S, Navari M, Onyango N, Granai M, Bellan C, De Falco G, Gibellini D, Piccaluga PP, Leoncini L. Unveiling another missing piece in EBV-driven lymphomagenesis: EBV-encoded MicroRNAs expression in EBER-negative Burkitt lymphoma cases. Front Microbiol. 2017;8:229.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vereide D, Sugden B. Proof for EBV’s sustaining role in Burkitt’s lymphomas. Semin Cancer Biol. 2009;19:389–93.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ambrosio MR, Rocca BJ, Ginori A, Mourmouras V, Amato T, Vindigni C, Lazzi S, Leoncini L. A look into the evolution of Epstein-Barr virus-induced lymphoproliferative disorders: a case study. Am J Clin Pathol. 2015;144(5):817–22.

    Article  CAS  PubMed  Google Scholar 

  53. Mannucci S, Luzzi A, Carugi A, Gozzetti A, Lazzi S, Malagnino V, Simmonds M, Cusi MG, Leoncini L, van den Bosch CA, De Falco G. Endemic Burkitt lymphoma. Adv Hematol. 2012;2012:149780.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bassan R, Maino E, Cortelazzo S. Lymphoblastic lymphoma: an updated review on biology, diagnosis, and treatment. Eur J Haematol. 2016;96(5):447–60. Review.

    Article  PubMed  Google Scholar 

  55. Paolini S, Gazzola A, Sabattini E, Bacci F, Pileri S, Piccaluga PP. Pathobiology of acute lymphoblastic leukemia. Semin Diagn Pathol. 2011;28(2):124–34.

    Article  PubMed  Google Scholar 

  56. Kratz CP, Stanulla M, Cavé H. Genetic predisposition to acute lymphoblastic leukemia: overview on behalf of the I-BFM ALL Host Genetic Variation Working Group. Eur J Med Genet. 2016;59(3):111–5. Review.

    Article  PubMed  Google Scholar 

  57. Cortelazzo S, Ferreri A, Hoelzer D, Ponzoni M. Lymphoblastic lymphoma. Crit Rev Oncol Hematol. 2017;113:304–17.

    Article  PubMed  Google Scholar 

  58. Geyer JT, Subramaniyam S, Jiang Y, Elemento O, Ferry JA, de Leval L, Nakashima MO, Liu YC, Martin P, Mathew S, Orazi A, Tam W. Lymphoblastic transformation of follicular lymphoma: a clinicopathologic and molecular analysis of 7 patients. Hum Pathol. 2015;46(2):260–71.

    Article  CAS  PubMed  Google Scholar 

  59. Oschlies I, Burkhardt B, Chassagne-Clement C, d’Amore ES, Hansson U, Hebeda K, Mc Carthy K, Kodet R, Maldyk J, Müllauer L, Porwit A, Schmatz AI, Tinguely M, Abramov D, Wotherspoon A, Zimmermann M, Reiter A, Klapper W. Diagnosis and immunophenotype of 188 pediatric lymphoblastic lymphomas treated within a randomized prospective trial: experiences and preliminary recommendations from the European childhood lymphoma pathology panel. Am J Surg Pathol. 2011;35(6):836–44. https://doi.org/10.1097/PAS.0b013e318213e90e.

  60. Burkhardt B, Bruch J, Zimmermann M, Strauch K, Parwaresch R, Ludwig WD, Harder L, Schlegelberger B, Mueller F, Harbott J, Reiter A. Loss of heterozygosity on chromosome 6q14-q24 is associated with poor outcome in children and adolescents with T-cell lymphoblastic lymphoma. Leukemia. 2006;20:1422–9.

    Article  CAS  PubMed  Google Scholar 

  61. Burkhardt B. Paediatric lymphoblastic T-cell leukaemia and lymphoma: one or two diseases? Br J Haematol. 2010;149:653–68.

    Article  CAS  PubMed  Google Scholar 

  62. Lones MA, Heerema NA, Le Beau MM, Sposto R, Perkins SL, Kadin ME, Kjeldsberg CR, Meadows A, Siegel S, Buckley J, Abromowitch M, Kersey J, Bergeron S, Cairo MS, Sanger WG. Chromosome abnormalities in advanced stage lymphoblastic lymphoma of children and adolescents: a report from CCG-E08. Cancer Genet Cytogenet. 2007;172:1–11.

    Article  CAS  PubMed  Google Scholar 

  63. Sekimizu M, Sunami S, Nakazawa A, Hayashi Y, Okimoto Y, Saito AM, Horibe K, Tsurusawa M, Mori T. Chromosome abnormalities in advanced stage T-cell lymphoblastic lymphoma of children and adolescents: a report from Japanese Paediatric Leukaemia/Lymphoma Study Group (JPLSG) and review of the literature. Br J Haematol. 2011;154(5):612–7.

    Article  PubMed  Google Scholar 

  64. Uyttebroeck A, Vanhentenrijk V, Hagemeijer A, Boeckx N, Renard M, Wlodarska I, Vandenberghe P, Depaepe P, De Wolf-Peeters C. Is there a difference in childhood T-cell acute lymphoblastic leukaemia and T-cell lymphoblastic lymphoma? Leuk Lymphoma. 2007;48:1745–54.

    Article  PubMed  Google Scholar 

  65. You MJ, Medeiros LJ, Hsi ED. T-lymphoblastic leukemia/lymphoma. Am J Clin Pathol. 2015;144(3):411–22.

    Article  CAS  PubMed  Google Scholar 

  66. Baleydier F, Decouvelaere AV, Bergeron J, Gaulard P, Canioni D, Bertrand Y, Lepretre S, Petit B, Dombret H, Beldjord K, Molina T, Asnafi V, Macintyre E. T cell receptor genotyping and HOXA/TLX1 expression define three T lymphoblastic lymphoma subsets which might affect clinical outcome. Clin Cancer Res. 2008;14(3):692–700.

    Article  CAS  PubMed  Google Scholar 

  67. Kaneko Y, Frizzera G, Maseki N, Sakurai M, Komada Y, Hiyoshi Y, Nakadate H, Takeda T. A novel translocation, t(9;17)(q34;q23), in aggressive childhood lymphoblastic lymphoma. Leukemia. 1998;2:745–8.

    Google Scholar 

  68. Schraders M, Van Reijmersdal SV, Kamping EJ, Van Krieken JH, Van Kessel AG, Groenen PJ, Hoogerbrugge PM, Kuiper RP. High-resolution genomic profiling of pediatric lymphoblastic lymphomas reveals subtle differences with pediatric acute lymphoblastic leukemias in the B-lineage. Cancer Genet Cytogenet. 2009;191:27–33.

    Article  CAS  PubMed  Google Scholar 

  69. Bonn BR, Rohde M, Zimmermann M, Krieger D, Oschlies I, Niggli F, et al. Incidence and prognostic relevance of genetic variations in T-cell lymphoblastic lymphoma in childhood and adolescence. Blood. 2013;121:3153–60.

    Article  CAS  PubMed  Google Scholar 

  70. Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71.

    Article  CAS  PubMed  Google Scholar 

  71. Bonn BR, Huge A, Rohde M, Oschlies I, Klapper W, Voss R, Makarova O, Rossig C, Jürgens H, Seggewiss J, Burkhardt B. Whole exome sequencing hints at a unique mutational profile of paediatric T-cell lymphoblastic lymphoma. Br J Haematol. 2015;168(2):308–13.

    Article  CAS  PubMed  Google Scholar 

  72. Raetz EA, Perkins SL, Bhojwani D, Smock K, Philip M, Carroll WL, et al. Gene expression profiling reveals intrinsic differences between T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Pediatr Blood Cancer. 2006;47:130–40.

    Article  PubMed  Google Scholar 

  73. Basso K, Mussolin L, Lettieri A, Brahmachary M, Lim WK, Califano A, et al. T-cell lymphoblastic lymphoma shows differences and similarities with T-cell acute lymphoblastic leukemia by genomic and gene expression analyses. Genes Chromosomes Cancer. 2011;50:1063–75.

    Article  CAS  PubMed  Google Scholar 

  74. Crazzolara R, Kreczy A, Mann G, et al. High expression of the chemokine receptor CXCR4 predicts extramedullary organ infiltration in childhood acute lymphoblastic leukaemia. Br J Haematol. 2001;115(3):545–53.

    Article  CAS  PubMed  Google Scholar 

  75. Herold T, Gökbuget N. Philadelphia-like acute lymphoblastic leukemia in adults. Curr Oncol Rep. 2017;19(5):31. https://doi.org/10.1007/s11912-017-0589-2. Review.

    Article  CAS  PubMed  Google Scholar 

  76. Agirre X, Martínez-Climent JA, Odero MD, Prósper F. Epigenetic regulation of miRNA genes in acute leukemia. Leukemia. 2012;26(3):395–403.

    Article  CAS  PubMed  Google Scholar 

  77. Yeh CH, Moles R, Nicot C. Clinical significance of microRNAs in chronic and acute human leukemia. Mol Cancer. 2016;15(1):37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Fulci V, et al. Characterization of B- and T-lineage acute lymphoblastic leukemia by integrated analysis of MicroRNA and mRNA expression profiles. Genes Chromosomes Cancer. 2009;48(12):1069–82.

    Article  CAS  PubMed  Google Scholar 

  79. Luan C, Yang Z, Chen B. The functional role of microRNA in acute lymphoblastic leukemia: relevance for diagnosis, differential diagnosis, prognosis, and therapy. Onco Targets Ther. 2015;8:2903–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Schotte D, et al. MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica. 2011;96(5):703–11.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Nemes K, et al. Expression of certain leukemia/lymphoma related microRNAs and its correlation with prognosis in childhood acute lymphoblastic leukemia. Pathol Oncol Res. 2015;21(3):597–604.

    Article  CAS  PubMed  Google Scholar 

  82. Rainer J, et al. Glucocorticoid-regulated microRNAs and mirtrons in acute lymphoblastic leukemia. Leukemia. 2009;23(4):746–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poirel, H.A., Ambrosio, M.R., Piccaluga, P.P., Leoncini, L. (2019). Pathology and Molecular Pathogenesis of Burkitt Lymphoma and Lymphoblastic Lymphoma. In: Lenz, G., Salles, G. (eds) Aggressive Lymphomas. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-00362-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00362-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00361-6

  • Online ISBN: 978-3-030-00362-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics