Skip to main content

Aggressive Lymphoma in Children and Adolescents

  • Chapter
  • First Online:
Aggressive Lymphomas

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 858 Accesses

Abstract

Non-Hodgkin lymphomas (NHL) account for 7% of childhood malignancies between the ages of 0 and 19 according to SEERS data from 2010 to 2014. NHL are rare in early childhood with an incidence of 7.3/106 children/year in the 1–4-year age group. By adolescence, the annual incidence rises with 14/106 children in the 10–14-year age range and 18.3/106 children in the 15–19-year age group. In addition, lymphoblastic leukemia accounts for another 20% of childhood cancers making malignancies of lymphatic origin the largest group of childhood cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reiter A. Diagnosis and treatment of childhood non-hodgkin lymphoma. Hematology Am Soc Hematol Educ Program. 2007;2007:285–96.

    Article  Google Scholar 

  2. Burkhardt B, et al. The impact of age and gender on biology, clinical features and treatment outcome of non-Hodgkin lymphoma in childhood and adolescence. Br J Haematol. 2005;131(1):39–49.

    Article  PubMed  Google Scholar 

  3. Worch J, Rohde M, Burkhardt B. Mature B-cell lymphoma and leukemia in children and adolescents—review of standard chemotherapy regimen and perspectives. Pediatr Hematol Oncol. 2013;30(6):465–83.

    Article  CAS  PubMed  Google Scholar 

  4. Lange J, Burkhardt B. Treatment of adolescents with aggressive B-cell malignancies: the pediatric experience. Curr Hematol Malig Rep. 2013;8(3):226–35.

    Article  PubMed  Google Scholar 

  5. Sandlund JT, Downing JR, Crist WM. Non-Hodgkin’s lymphoma in childhood. N Engl J Med. 1996;334(19):1238–48.

    Article  CAS  PubMed  Google Scholar 

  6. Burkhardt B, et al. Non-Hodgkin’s lymphoma in adolescents: experiences in 378 adolescent NHL patients treated according to pediatric NHL-BFM protocols. Leukemia. 2011;25(1):153–60.

    Article  CAS  PubMed  Google Scholar 

  7. Salzburg J, et al. Prevalence, clinical pattern, and outcome of CNS involvement in childhood and adolescent non-Hodgkin’s lymphoma differ by non-Hodgkin’s lymphoma subtype: a Berlin-Frankfurt-Munster Group report. J Clin Oncol. 2007;25(25):3915–22.

    Article  PubMed  Google Scholar 

  8. Cairo MS, et al. Advanced stage, increased lactate dehydrogenase, and primary site, but not adolescent age (>/= 15 years), are associated with an increased risk of treatment failure in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: results of the FAB LMB 96 study. J Clin Oncol. 2012;30(4):387–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Abla O, et al. Primary CNS lymphoma in children and adolescents: a descriptive analysis from the International Primary CNS Lymphoma Collaborative Group (IPCG). Clin Cancer Res. 2011;17(2):346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thorer H, et al. Primary central nervous system lymphoma in children and adolescents: low relapse rate after treatment according to Non-Hodgkin-Lymphoma Berlin-Frankfurt-Munster protocols for systemic lymphoma. Haematologica. 2014;99(11):e238–41.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Swerdlow SH, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissue. World Health Organization classification of tumours. Lyon: IARC; 2008.

    Google Scholar 

  12. Swerdlow SH, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project. Blood. 1997;89(11):3909–18.

    Google Scholar 

  14. Hummel M, et al. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med. 2006;354(23):2419–30.

    Article  CAS  PubMed  Google Scholar 

  15. Dave SS, et al. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med. 2006;354(23):2431–42.

    Article  CAS  PubMed  Google Scholar 

  16. Mbulaiteye SM, et al. Pediatric, elderly, and emerging adult-onset peaks in Burkitt’s lymphoma incidence diagnosed in four continents, excluding Africa. Am J Hematol. 2012;87(6):573–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Boerma EG, et al. Gender and age-related differences in Burkitt lymphoma—epidemiological and clinical data from The Netherlands. Eur J Cancer. 2004;40(18):2781–7.

    Article  CAS  PubMed  Google Scholar 

  18. Molyneux EM, et al. Burkitt’s lymphoma. Lancet. 2012;379(9822):1234–44.

    Article  PubMed  Google Scholar 

  19. Schmitz R, et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490(7418):116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Richter J, et al. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat Genet. 2012;44(12):1316–20.

    Article  CAS  PubMed  Google Scholar 

  21. Love C, et al. The genetic landscape of mutations in Burkitt lymphoma. Nat Genet. 2012;44(12):1321–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Campo E. New pathogenic mechanisms in Burkitt lymphoma. Nat Genet. 2012;44(12):1288–9.

    Article  CAS  PubMed  Google Scholar 

  23. Rohde M, et al. Relevance of ID3-TCF3-CCND3 pathway mutations in pediatric aggressive B-cell lymphoma treated according to the non-Hodgkin Lymphoma Berlin-Frankfurt-Munster protocols. Haematologica. 2017;102(6):1091–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosenwald A, Staudt LM. Gene expression profiling of diffuse large B-cell lymphoma. Leuk Lymphoma. 2003;44(Suppl 3):S41–7.

    Article  CAS  PubMed  Google Scholar 

  25. Alizadeh AA, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.

    Article  CAS  PubMed  Google Scholar 

  26. Rosenwald A, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(25):1937–47.

    Article  PubMed  Google Scholar 

  27. Hans CP, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–82.

    Article  CAS  PubMed  Google Scholar 

  28. Choi WW, et al. A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clin Cancer Res. 2009;15(17):5494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oschlies I, et al. Diffuse large B-cell lymphoma in pediatric patients belongs predominantly to the germinal-center type B-cell lymphomas: a clinicopathologic analysis of cases included in the German BFM (Berlin-Frankfurt-Munster) Multicenter Trial. Blood. 2006;107(10):4047–52.

    Article  CAS  PubMed  Google Scholar 

  30. Szczepanowski M, et al. Cell-of-origin classification by gene expression and MYC-rearrangements in diffuse large B-cell lymphoma of children and adolescents. Br J Haematol. 2017;179(1):116–9.

    Article  CAS  PubMed  Google Scholar 

  31. Salaverria I, et al. Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults. Blood. 2011;118(1):139–47.

    Article  CAS  PubMed  Google Scholar 

  32. Miles RR, et al. Pediatric diffuse large B-cell lymphoma demonstrates a high proliferation index, frequent c-Myc protein expression, and a high incidence of germinal center subtype: report of the French-American-British (FAB) international study group. Pediatr Blood Cancer. 2008;51(3):369–74.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Murphy SB. Classification, staging and end results of treatment of childhood non-Hodgkin’s lymphomas: dissimilarities from lymphomas in adults. Semin Oncol. 1980;7(3):332–9.

    CAS  PubMed  Google Scholar 

  34. Rosolen A, et al. Revised international pediatric non-Hodgkin lymphoma staging system. J Clin Oncol. 2015;33(18):2112–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Woessmann W, et al. The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasms: a report of the BFM Group Study NHL-BFM95. Blood. 2005;105(3):948–58.

    Article  CAS  PubMed  Google Scholar 

  36. Reiter A, et al. Improved treatment results in childhood B-cell neoplasms with tailored intensification of therapy: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood. 1999;94(10):3294–306.

    CAS  PubMed  Google Scholar 

  37. Fujita N, et al. Results of the Japan Association of Childhood Leukemia Study (JACLS) NHL-98 protocol for the treatment of B-cell non-Hodgkin lymphoma and mature B-cell acute lymphoblastic leukemia in childhood. Leuk Lymphoma. 2011;52(2):223–9.

    Article  CAS  PubMed  Google Scholar 

  38. Patte C, et al. The Societe Francaise d’Oncologie Pediatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood. 2001;97(11):3370–9.

    Article  CAS  PubMed  Google Scholar 

  39. Patte C, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cairo MS, et al. Results of a randomized international study of high-risk central nervous system B non-Hodgkin lymphoma and B acute lymphoblastic leukemia in children and adolescents. Blood. 2007;109(7):2736–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pillon M, et al. Long-term results of the first Italian Association of Pediatric Hematology and Oncology protocol for the treatment of pediatric B-cell non-Hodgkin lymphoma (AIEOP LNH92). Cancer. 2004;101(2):385–94.

    Article  CAS  PubMed  Google Scholar 

  42. A predictive model for aggressive non-Hodgkin’s lymphoma. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. N Engl J Med. 1993;329(14):987–94.

    Google Scholar 

  43. Gerrard M, et al. Excellent survival following two courses of COPAD chemotherapy in children and adolescents with resected localized B-cell non-Hodgkin’s lymphoma: results of the FAB/LMB 96 international study. Br J Haematol. 2008;141(6):840–7.

    Article  CAS  PubMed  Google Scholar 

  44. Kikuchi A, et al. Outcome of childhood B-cell non-Hodgkin lymphoma and B-cell acute lymphoblastic leukemia treated with the Tokyo Children’s Cancer Study Group NHL B9604 protocol. Leuk Lymphoma. 2008;49(4):757–62.

    Article  CAS  PubMed  Google Scholar 

  45. Jourdain A, et al. Outcome of and prognostic factors for relapse in children and adolescents with mature B-cell lymphoma and leukemia treated in three consecutive prospective “Lymphomes Malins B” protocols. A Societe Francaise des Cancers de l’Enfant study. Haematologica. 2015;100(6):810–7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Anoop P, et al. Outcome of childhood relapsed or refractory mature B-cell non-Hodgkin lymphoma and acute lymphoblastic leukemia. Leuk Lymphoma. 2012;53(10):1882–8.

    Article  CAS  PubMed  Google Scholar 

  47. Gross TG, et al. Hematopoietic stem cell transplantation for refractory or recurrent non-Hodgkin lymphoma in children and adolescents. Biol Blood Marrow Transplant. 2010;16(2):223–30.

    Article  PubMed  Google Scholar 

  48. Fujita N, et al. The role of hematopoietic stem cell transplantation with relapsed or primary refractory childhood B-cell non-Hodgkin lymphoma and mature B-cell leukemia: a retrospective analysis of enrolled cases in Japan. Pediatr Blood Cancer. 2008;51(2):188–92.

    Article  PubMed  Google Scholar 

  49. Woessmann W, Reiter A. Re-induction approaches to relapsed/refractory childhood and adolescent non Hodgkin¢s lymphoma: BFM perspective. Br J Haematol. 2012;159(Suppl. 1):Abstract 71.

    Google Scholar 

  50. Griffin TC, et al. A study of rituximab and ifosfamide, carboplatin, and etoposide chemotherapy in children with recurrent/refractory B-cell (CD20+) non-Hodgkin lymphoma and mature B-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2009;52(2):177–81.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Samochatova EV, et al. Therapy of advanced-stage mature B-cell lymphoma and leukemia in children and adolescents with rituximab and reduced intensity induction chemotherapy (B-NHL 2004M protocol): the results of a multicenter study. J Pediatr Hematol Oncol. 2014;36(5):395–401.

    Article  CAS  PubMed  Google Scholar 

  52. Meinhardt A, et al. Phase II window study on rituximab in newly diagnosed pediatric mature B-cell non-Hodgkin’s lymphoma and Burkitt leukemia. J Clin Oncol. 2010;28(19):3115–21.

    Article  CAS  PubMed  Google Scholar 

  53. Lisfeld J, et al. Phase II window study on rituximab in newly diagnosed pediatric mature B-cell non-Hodgkin’s lymphoma and Burkitt leukemia: dose-escalation does not increase the response rate. Br J Haematol. 2012;112(Suppl. 2012):Abstract 6.

    Google Scholar 

  54. Cairo M, et al. Safety, kinetics, and outcome following rituximab (R) in combination with FAB chemotherapy in children and adolescents (C+A) with stage III/IV (Group B) and BM+/CNS+ (Group C) mature B-NHL: a Children’s Oncology Group report. JCO. 2010;28(15s):9536.

    Article  Google Scholar 

  55. Frazer K, et al. Efficacy of rituximab plus FAB group C chemotherapy without CNS radiation in CNS-positive pediatric Burkitt lymphoma/leukemia: a report from the Children’s Oncology Group. JCO. 2012;30(15_suppl):9501.

    Google Scholar 

  56. Goldman S, et al. Preliminary results of the addition of Rasburicase to the reduction cycle and rituximab to the induction and consolidation cycles of FAB Group C Chemotherapy in Children and Adolescents with Advanced Stage (Bone Marrow ±CNS) Mature B-Cell Non-Hodgkin Lymphoma (B-NHL): a Children’s Oncology Group report. Blood. 2009;114:104.

    Article  CAS  Google Scholar 

  57. Goldman S, et al. The efficacy of rasburicase and rituximab combined with FAB chemotherapy in children and adolescents with newly diagnosed stage III/IV, BM+ and CNS+ Mature B-NHL: a Children’s Oncology Group Report. Blood. 2011;118:2702.

    Article  CAS  Google Scholar 

  58. Goldman S, et al. Rituximab with chemotherapy in children and adolescents with central nervous system and/or bone marrow-positive Burkitt lymphoma/leukaemia: a Children’s Oncology Group Report. Br J Haematol. 2014;167(3):394–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goldman S, et al. Rituximab and FAB/LMB 96 chemotherapy in children with Stage III/IV B-cell non-Hodgkin lymphoma: a Children’s Oncology Group report. Leukemia. 2013;27(5):1174–7.

    Article  CAS  PubMed  Google Scholar 

  60. Barth MJ, et al. Rituximab pharmacokinetics in children and adolescents with de novo intermediate and advanced mature B-cell lymphoma/leukaemia: a Children’s Oncology Group report. Br J Haematol. 2013;162(5):678–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Worch J, Makarova O, Burkhardt B. Immunreconstitution and infectious complications after rituximab treatment in children and adolescents: what do we know and what can we learn from adults? Cancers (Basel). 2015;7(1):305–28.

    Article  CAS  Google Scholar 

  62. Schmidt E, Burkhardt B. Lymphoblastic lymphoma in childhood and adolescence. Pediatr Hematol Oncol. 2013;30(6):484–508.

    Article  CAS  PubMed  Google Scholar 

  63. Oschlies I, et al. Clinical, pathological and genetic features of primary mediastinal large B-cell lymphomas and mediastinal gray zone lymphomas in children. Haematologica. 2011;96(2):262–8.

    Article  PubMed  Google Scholar 

  64. Ducassou S, et al. Clinical presentation, evolution, and prognosis of precursor B-cell lymphoblastic lymphoma in trials LMT96, EORTC 58881, and EORTC 58951. Br J Haematol. 2011;152(4):441–51.

    Article  CAS  PubMed  Google Scholar 

  65. Neth O, et al. Precursor B-cell lymphoblastic lymphoma in childhood and adolescence: clinical features, treatment, and results in trials NHL-BFM 86 and 90. Med Pediatr Oncol. 2000;35(1):20–7.

    Article  CAS  PubMed  Google Scholar 

  66. Bene MC, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10):1783–6.

    CAS  PubMed  Google Scholar 

  67. Oschlies I, et al. Diagnosis and immunophenotype of 188 pediatric lymphoblastic lymphomas treated within a randomized prospective trial: experiences and preliminary recommendations from the European childhood lymphoma pathology panel. Am J Surg Pathol. 2011;35(6):836–44.

    Article  PubMed  Google Scholar 

  68. Patel JL, et al. The immunophenotype of T-lymphoblastic lymphoma in children and adolescents: a Children’s Oncology Group report. Br J Haematol. 2012;159(4):454–61.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Smock KJ, et al. Characterization of childhood precursor T-lymphoblastic lymphoma by immunophenotyping and fluorescent in situ hybridization: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2008;51(4):489–94.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Coustan-Smith E, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. You MJ, Medeiros LJ, Hsi ED. T-lymphoblastic leukemia/lymphoma. Am J Clin Pathol. 2015;144(3):411–22.

    Article  CAS  PubMed  Google Scholar 

  72. Haydu JE, Ferrando AA. Early T-cell precursor acute lymphoblastic leukaemia. Curr Opin Hematol. 2013;20(4):369–73.

    Article  CAS  PubMed  Google Scholar 

  73. Patrick K, et al. Outcome for children and young people with Early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br J Haematol. 2014;166(3):421–4.

    Article  CAS  PubMed  Google Scholar 

  74. Burkhardt B, et al. Current status and future directions of T-lymphoblastic lymphoma in children and adolescents. Br J Haematol. 2016;173(4):545–59.

    Article  PubMed  Google Scholar 

  75. Tubergen DG, et al. Comparison of treatment regimens for pediatric lymphoblastic non-Hodgkin’s lymphoma: a Childrens Cancer Group study. J Clin Oncol. 1995;13(6):1368–76.

    Article  CAS  PubMed  Google Scholar 

  76. Abromowitch M, et al. High-dose methotrexate and early intensification of therapy do not improve 3 year EFS in children and adolescents with disseminated lymphoblastic lymphoma. Results of the randomized arms of COG A5971. Blood. 2008;112:3610.

    Google Scholar 

  77. Uyttebroeck A, et al. Treatment of childhood T-cell lymphoblastic lymphoma according to the strategy for acute lymphoblastic leukaemia, without radiotherapy: long term results of the EORTC CLG 58881 trial. Eur J Cancer. 2008;44(6):840–6.

    Article  PubMed  Google Scholar 

  78. Reiter A, et al. Results of the European intergroup trial EURO-LB02 on lymphoblastic lymphoma (LBL) in children/adolescents. Br J Haematol. 2012;159(Suppl. 1):38.

    Google Scholar 

  79. Burkhardt B. Paediatric lymphoblastic T-cell leukaemia and lymphoma: one or two diseases? Br J Haematol. 2010;149(5):653–68.

    Article  CAS  PubMed  Google Scholar 

  80. Basso K, et al. T-cell lymphoblastic lymphoma shows differences and similarities with T-cell acute lymphoblastic leukemia by genomic and gene expression analyses. Genes Chromosomes Cancer. 2011;50(12):1063–75.

    Article  CAS  PubMed  Google Scholar 

  81. Uyttebroeck A, et al. Is there a difference in childhood T-cell acute lymphoblastic leukaemia and T-cell lymphoblastic lymphoma? Leuk Lymphoma. 2007;48(9):1745–54.

    Article  PubMed  Google Scholar 

  82. Burkhardt B, et al. Loss of heterozygosity on chromosome 6q14-q24 is associated with poor outcome in children and adolescents with T-cell lymphoblastic lymphoma. Leukemia. 2006;20(8):1422–9.

    Article  CAS  PubMed  Google Scholar 

  83. Lones MA, et al. Chromosome abnormalities in advanced stage lymphoblastic lymphoma of children and adolescents: a report from CCG-E08. Cancer Genet Cytogenet. 2007;172(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  84. Breit S, et al. Activating NOTCH1 mutations predict favorable early treatment response and long term outcome in child-hood precursor T-cell lymphoblastic leukemia. Blood. 2006;108(4):1151–7.

    Article  CAS  PubMed  Google Scholar 

  85. Kox C, et al. The favorable effect of activating NOTCH1 receptor mutations on long-term outcome in T-ALL patients treated on the ALL-BFM 2000 protocol can be separated from FBXW7 loss of function. Leukemia. 2010;24(12):2005–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bonn BR, et al. Incidence and prognostic relevance of genetic variations in T-cell lymphoblastic lymphoma in childhood and adolescence. Blood. 2013;121(16):3153–60.

    Article  CAS  PubMed  Google Scholar 

  87. Callens C, et al. Clinical impact of NOTCH1 and/or FBXW7 mutations, FLASH deletion, and TCR status in pediatric T-cell lymphoblastic lymphoma. J Clin Oncol. 2012;30(16):1966–73.

    Article  CAS  PubMed  Google Scholar 

  88. Park MJ, et al. FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgkin lymphoma. Br J Haematol. 2009;145(2):198–206.

    Article  CAS  PubMed  Google Scholar 

  89. Baleydier F, et al. T cell receptor genotyping and HOXA/TLX1 expression define three T lymphoblastic lymphoma subsets which might affect clinical outcome. Clin Cancer Res. 2008;14(3):692–700.

    Article  CAS  PubMed  Google Scholar 

  90. Burkhardt B, et al. Pediatric precursor T lymphoblastic leukemia and lymphoblastic lymphoma: differences in the common regions with loss of heterozygosity at chromosome 6q and their prognostic impact. Leuk Lymphoma. 2008;49(3):451–61.

    Article  CAS  PubMed  Google Scholar 

  91. Balbach ST, et al. Proposal of a genetic classifier for risk group stratification in pediatric T-cell lymphoblastic lymphoma reveals differences from adult T-cell lymphoblastic leukemia. Leukemia. 2016;30(4):970–3.

    Article  CAS  PubMed  Google Scholar 

  92. Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13(5):283–96.

    Article  CAS  PubMed  Google Scholar 

  93. Hales EC, Taub JW, Matherly LH. New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of gamma-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cell Signal. 2014;26(1):149–61.

    Article  CAS  PubMed  Google Scholar 

  94. Bandapalli OR, et al. NOTCH1 activation clinically antagonizes the unfavorable effect of PTEN inactivation in BFM-treated children with precursor T-cell acute lymphoblastic leukemia. Haematologica. 2013;98(6):928–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zuurbier L, et al. NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols. Leukemia. 2010;24(12):2014–22.

    Article  CAS  PubMed  Google Scholar 

  96. Gutierrez A, et al. Absence of biallelic TCRgamma deletion predicts early treatment failure in pediatric T-cell acute lymphoblastic leukemia. J Clin Oncol. 2010;28(24):3816–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang YL, et al. Absence of biallelic TCRgamma deletion predicts induction failure and poorer outcomes in childhood T-cell acute lymphoblastic leukemia. Pediatr Blood Cancer. 2012;58(6):846–51.

    Article  PubMed  Google Scholar 

  98. Stark B, et al. Bone marrow minimal disseminated disease (MDD) and minimal residual disease (MRD) in childhood T-cell lymphoblastic lymphoma stage III, detected by flow cytometry (FC) and real-time quantitative polymerase chain reaction (RQ-PCR). Pediatr Blood Cancer. 2009;52(1):20–5.

    Article  PubMed  Google Scholar 

  99. Coustan-Smith E, et al. Minimal disseminated disease in childhood T-cell lymphoblastic lymphoma: a report from the Children’s Oncology Group. J Clin Oncol. 2009;27(21):3533–9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Mussolin L, et al. Detection and role of minimal disseminated disease in children with lymphoblastic lymphoma: the AIEOP experience. Pediatr Blood Cancer. 2015;62(11):1906–13.

    Article  PubMed  Google Scholar 

  101. Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002;21(35):5427–40.

    Article  CAS  PubMed  Google Scholar 

  102. Roman-Gomez J, et al. Poor prognosis in acute lymphoblastic leukemia may relate to promoter hypermethylation of cancer-related genes. Leuk Lymphoma. 2007;48(7):1269–82.

    Article  CAS  PubMed  Google Scholar 

  103. Bardi E, et al. Value of FDG-PET/CT examinations in different cancers of children, focusing on lymphomas. Pathol Oncol Res. 2014;20(1):139–43.

    Article  CAS  PubMed  Google Scholar 

  104. Nakatani K, et al. Roles and limitations of FDG PET in pediatric non-Hodgkin lymphoma. Clin Nucl Med. 2012;37(7):656–62.

    Article  PubMed  Google Scholar 

  105. Riad R, et al. Role of PET/CT in malignant pediatric lymphoma. Eur J Nucl Med Mol Imaging. 2010;37(2):319–29.

    Article  PubMed  Google Scholar 

  106. Riad R, et al. False-positive F-18 FDG uptake in PET/CT studies in pediatric patients with abdominal Burkitt’s lymphoma. Nucl Med Commun. 2010;31(3):232–8.

    Article  PubMed  Google Scholar 

  107. Sioka C. The utility of FDG PET in diagnosis and follow-up of lymphoma in childhood. Eur J Pediatr. 2013;172(6):733–8.

    Article  PubMed  Google Scholar 

  108. Patte C, et al. Results of the LMT81 protocol, a modified LSA2L2 protocol with high dose methotrexate, on 84 children with non-B-cell (lymphoblastic) lymphoma. Med Pediatr Oncol. 1992;20(2):105–13.

    Article  CAS  PubMed  Google Scholar 

  109. Amylon MD, et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a Pediatric Oncology Group study. Leukemia. 1999;13(3):335–42.

    Article  CAS  PubMed  Google Scholar 

  110. Reiter A, et al. Intensive ALL-type therapy without local radiotherapy provides a 90% event-free survival for children with T-cell lymphoblastic lymphoma: a BFM group report. Blood. 2000;95(2):416–21.

    CAS  PubMed  Google Scholar 

  111. Burkhardt B, et al. Impact of cranial radiotherapy on central nervous system prophylaxis in children and adolescents with central nervous system-negative stage III or IV lymphoblastic lymphoma. J Clin Oncol. 2006;24(3):491–9.

    Article  PubMed  Google Scholar 

  112. Abromowitch M, et al. Shortened intensified multi-agent chemotherapy and non-cross resistant maintenance therapy for advanced lymphoblastic lymphoma in children and adolescents: report from the Children’s Oncology Group. Br J Haematol. 2008;143(2):261–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pillon M, et al. Long-term results of AIEOP LNH-92 protocol for the treatment of pediatric lymphoblastic lymphoma: a report of the Italian Association of pediatric hematology and oncology. Pediatr Blood Cancer. 2009;53(6):953–9.

    Article  PubMed  Google Scholar 

  114. Sandlund JT, et al. Effective treatment of advanced-stage childhood lymphoblastic lymphoma without prophylactic cranial irradiation: results of St Jude NHL13 study. Leukemia. 2009;23(6):1127–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Asselin BL, et al. Effectiveness of high-dose methotrexate in T-cell lymphoblastic leukemia and advanced-stage lymphoblastic lymphoma: a randomized study by the Children’s Oncology Group (POG 9404). Blood. 2011;118(4):874–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Termuhlen AM, et al. Outcome of newly diagnosed children and adolescents with localized lymphoblastic lymphoma treated on Children’s Oncology Group trial A5971: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2012;59(7):1229–33.

    Article  PubMed  Google Scholar 

  117. Uyttebroeck A, et al. Dexamethasone (DEX) versus prednisone (PRED) in T-cell non Hodgkin lymphoma (T-NHL): results of the randomized phase III trial 58951 of the EORTC Children Leukemia Group. Br J Haematol. 2012;159(Suppl. 1):37.

    Google Scholar 

  118. Bergeron C, et al. Treatment of childhood T-cell lymphoblastic lymphoma-long-term results of the SFOP LMT96 trial. Pediatr Blood Cancer. 2015;62(12):2150–6.

    Article  CAS  PubMed  Google Scholar 

  119. Wollner N, et al. Non-Hodgkin’s lymphoma in children. A comparative study of two modalities of therapy. Cancer. 1976;37(1):123–34.

    Article  CAS  PubMed  Google Scholar 

  120. Wollner N, Exelby PR, Lieberman PH. Non-Hodgkin’s lymphoma in children: a progress report on the original patients treated with the LSA2-L2 protocol. Cancer. 1979;44(6):1990–9.

    Article  CAS  PubMed  Google Scholar 

  121. Reiter A, et al. Non-Hodgkin’s lymphomas of childhood and adolescence: results of a treatment stratified for biologic subtypes and stage—a report of the Berlin-Frankfurt-Munster Group. J Clin Oncol. 1995;13(2):359–72.

    Article  CAS  PubMed  Google Scholar 

  122. Jin L, et al. Clinical features and prognosis of children with lymphoblastic lymphoma. Zhonghua Zhong Liu Za Zhi. 2012;34(2):138–42.

    PubMed  Google Scholar 

  123. Kobayashi R, et al. Inferior outcomes of stage III T lymphoblastic lymphoma relative to stage IV lymphoma and T-acute lymphoblastic leukemia: long-term comparison of outcomes in the JACLS NHL T-98 and ALL T-97 protocols. Int J Hematol. 2014;99(6):743–9.

    Article  CAS  PubMed  Google Scholar 

  124. Sun XF, et al. Intensive chemotherapy improved treatment outcome for Chinese children and adolescents with lymphoblastic lymphoma. Int J Clin Oncol. 2008;13(5):436–41.

    Article  CAS  PubMed  Google Scholar 

  125. Gao YJ, et al. Clinical outcome of childhood lymphoblastic lymphoma in Shanghai China 2001-2010. Pediatr Blood Cancer. 2014;61(4):659–63.

    Article  PubMed  Google Scholar 

  126. Sunami S, et al. Prognostic impact of intensified maintenance therapy on children with advanced lymphoblastic lymphoma: a report from the Japanese Pediatric Leukemia/Lymphoma Study Group ALB-NHL03 study. Pediatr Blood Cancer. 2016;63(3):451–7.

    Article  PubMed  Google Scholar 

  127. Termuhlen AM, et al. Disseminated lymphoblastic lymphoma in children and adolescents: results of the COG A5971 trial: a report from the Children’s Oncology Group. Br J Haematol. 2013;162(6):792–801.

    Article  CAS  PubMed  Google Scholar 

  128. Sterba J, et al. Capizzi methotrexate with BFM backbone without craniospinal irradiation is effective treatment for pediatric lymphoblastic lymphoma: results from 5 countries with I-BFM LL 09 protocol. Br J Haematol. 2015;171(Suppl.1):33.

    Google Scholar 

  129. Mitsui T, et al. Retrospective analysis of relapsed or primary refractory childhood lymphoblastic lymphoma in Japan. Pediatr Blood Cancer. 2009;52(5):591–5.

    Article  PubMed  Google Scholar 

  130. Gross TG, et al. Hematopoietic stem cell transplantation for refractory or recurrent non-hodgkin lymphoma in children and adolescents. Biol Blood Marrow Transplant. 2009;16(2):223–30.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Burkhardt B, et al. Outcome of adolescents with Non-Hodgkin Lymphoma in the BFM studies: Relevance of gender and histological subtype. In: 3rd International Symposium on Childhood, adolescent and young adult Non-Hodgkin’s Lymphoma. Frankfurt, Germany: Hematology meeting reports; 2009.

    Google Scholar 

  132. Cohen MH, et al. FDA drug approval summary: nelarabine (Arranon) for the treatment of T-cell lymphoblastic leukemia/lymphoma. Oncologist. 2008;13(6):709–14.

    Article  CAS  PubMed  Google Scholar 

  133. Dunsmore KP, et al. Pilot study of nelarabine in combination with intensive chemotherapy in high-risk T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(22):2753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Winter SS, et al. Safe integration of nelarabine into intensive chemotherapy in newly diagnosed T-cell acute lymphoblastic leukemia: Children’s Oncology Group Study AALL0434. Pediatr Blood Cancer. 2015;62(7):1176–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Raetz EA, Teachey DT. T-cell acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2016;2016(1):580–8.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Pileri SA, et al. Anaplastic large cell lymphoma: update of findings. Leuk Lymphoma. 1995;18(1–2):17–25.

    Article  CAS  PubMed  Google Scholar 

  137. Stansfeld AG, et al. Updated Kiel classification for lymphomas. Lancet. 1988;1(8580):292–3.

    Article  CAS  PubMed  Google Scholar 

  138. Harris NL, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994;84(5):1361–92.

    CAS  PubMed  Google Scholar 

  139. Morris SW, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263(5151):1281–4.

    Article  CAS  PubMed  Google Scholar 

  140. Delsol G, Jaffe ES, Falini B, Gascoyne RD, Muller-Hermelink HK, Stein H, Campo E, Kinney MC. Anaplastic Large Cell Lymphoma (ALCL), ALK-positive. In: Swerdlow S, Campo E, Harris NL, editors. WHO classification of tumors of the hematopoietic and lymphoid tissues. 4th ed. Lyon, France: IARC; 2008. p. 312–6.

    Google Scholar 

  141. Oschlies I, et al. ALK-positive anaplastic large cell lymphoma limited to the skin: clinical, histopathological and molecular analysis of 6 pediatric cases. A report from the ALCL99 study. Haematologica. 2013;98(1):50–6.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Swerdlow SH, Webber SA, Chadburn A. Post-Transplant lymphoproliferative disorders. In: Swerdlow SH, Campo E, Lee Harris N, editors. WHO classification of tumors of the hematopoietic and lymphoid tissues. Lyon, France: International Agency for Research on Cancer (IARC); 2008. p. 343–51.

    Google Scholar 

  143. Adams SV, Newcomb PA, Shustov AR. Racial patterns of peripheral T-cell lymphoma incidence and survival in the United States. J Clin Oncol. 2016;34(9):963–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mussolin L, et al. Prevalence and clinical implications of bone marrow involvement in pediatric anaplastic large cell lymphoma. Leukemia. 2005;19(9):1643–7.

    Article  CAS  PubMed  Google Scholar 

  145. Grewal JS, et al. Highly aggressive ALK-positive anaplastic large cell lymphoma with a leukemic phase and multi-organ involvement: a report of three cases and a review of the literature. Ann Hematol. 2007;86(7):499–508.

    Article  PubMed  Google Scholar 

  146. Kinney MC, et al. A small-cell-predominant variant of primary Ki-1 (CD30)+ T-cell lymphoma. Am J Surg Pathol. 1993;17(9):859–68.

    Article  CAS  PubMed  Google Scholar 

  147. Bayle C, et al. Leukaemic presentation of small cell variant anaplastic large cell lymphoma: report of four cases. Br J Haematol. 1999;104(4):680–8.

    Article  CAS  PubMed  Google Scholar 

  148. Onciu M, et al. ALK-positive anaplastic large cell lymphoma with leukemic peripheral blood involvement is a clinicopathologic entity with an unfavorable prognosis. Report of three cases and review of the literature. Am J Clin Pathol. 2003;120(4):617–25.

    Article  PubMed  Google Scholar 

  149. Spiegel A, et al. Paediatric anaplastic large cell lymphoma with leukaemic presentation in children: a report of nine French cases. Br J Haematol. 2014;165(4):545–51.

    Article  PubMed  Google Scholar 

  150. Malcolm TI, et al. Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress. Nat Commun. 2016;7:10087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Turner SD, et al. Anaplastic large cell lymphoma in paediatric and young adult patients. Br J Haematol. 2016;173(4):560–72.

    Article  PubMed  Google Scholar 

  152. Iwahara T, et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene. 1997;14(4):439–49.

    Article  CAS  PubMed  Google Scholar 

  153. Borer RA, et al. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell. 1989;56(3):379–90.

    Article  CAS  PubMed  Google Scholar 

  154. Perkins SL, et al. Childhood anaplastic large cell lymphoma has a high incidence of ALK gene rearrangement as determined by immunohistochemical staining and fluorescent in situ hybridisation: a genetic and pathological correlation. Br J Haematol. 2005;131(5):624–7.

    Article  PubMed  Google Scholar 

  155. Stein H, et al. CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96(12):3681–95.

    CAS  PubMed  Google Scholar 

  156. Zhang Q, et al. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J Immunol. 2002;168(1):466–74.

    Article  CAS  PubMed  Google Scholar 

  157. Kasprzycka M, et al. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc Natl Acad Sci U S A. 2006;103(26):9964–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Marzec M, et al. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway. Oncogene. 2007;26(38):5606–14.

    Article  CAS  PubMed  Google Scholar 

  159. Marzec M, et al. Oncogenic tyrosine kinase NPM/ALK induces activation of the MEK/ERK signaling pathway independently of c-Raf. Oncogene. 2007;26(6):813–21.

    Article  CAS  PubMed  Google Scholar 

  160. Nieborowska-Skorska M, et al. Role of signal transducer and activator of transcription 5 in nucleophosmin/anaplastic lymphoma kinase-mediated malignant transformation of lymphoid cells. Cancer Res. 2001;61(17):6517–23.

    CAS  PubMed  Google Scholar 

  161. Slupianek A, et al. Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res. 2001;61(5):2194–9.

    CAS  PubMed  Google Scholar 

  162. Marzec M, et al. Malignant transformation of CD4+ T lymphocytes mediated by oncogenic kinase NPM/ALK recapitulates IL-2-induced cell signaling and gene expression reprogramming. J Immunol. 2013;191(12):6200–7.

    Article  CAS  PubMed  Google Scholar 

  163. Werner MT, et al. Nucleophosmin-anaplastic lymphoma kinase: the ultimate oncogene and therapeutic target. Blood. 2017;129(7):823–31.

    Article  CAS  PubMed  Google Scholar 

  164. Crescenzo R, et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell. 2015;27(4):516–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Marzec M, et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci U S A. 2008;105(52):20852–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhang Q, et al. IL-2R common gamma-chain is epigenetically silenced by nucleophosphin-anaplastic lymphoma kinase (NPM-ALK) and acts as a tumor suppressor by targeting NPM-ALK. Proc Natl Acad Sci U S A. 2011;108(29):11977–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Krenacs L, et al. Cytotoxic cell antigen expression in anaplastic large cell lymphomas of T- and null-cell type and Hodgkin’s disease: evidence for distinct cellular origin. Blood. 1997;89(3):980–9.

    CAS  PubMed  Google Scholar 

  168. Foss HD, et al. Anaplastic large-cell lymphomas of T-cell and null-cell phenotype express cytotoxic molecules. Blood. 1996;88(10):4005–11.

    CAS  PubMed  Google Scholar 

  169. Matsuyama H, et al. miR-135b mediates NPM-ALK-driven oncogenicity and renders IL-17-producing immunophenotype to anaplastic large cell lymphoma. Blood. 2011;118(26):6881–92.

    Article  CAS  PubMed  Google Scholar 

  170. Laurent C, et al. Circulating t(2;5)-positive cells can be detected in cord blood of healthy newborns. Leukemia. 2012;26(1):188–90.

    Article  CAS  PubMed  Google Scholar 

  171. Moti N, et al. Anaplastic large cell lymphoma-propagating cells are detectable by side population analysis and possess an expression profile reflective of a primitive origin. Oncogene. 2015;34(14):1843–52.

    Article  CAS  PubMed  Google Scholar 

  172. Brugieres L, et al. Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: results of a randomized trial of the EICNHL Group. J Clin Oncol. 2009;27(6):897–903.

    Article  CAS  PubMed  Google Scholar 

  173. Williams DM, et al. Anaplastic large cell lymphoma in childhood: analysis of 72 patients treated on The United Kingdom Children’s Cancer Study Group chemotherapy regimens. Br J Haematol. 2002;117(4):812–20.

    Article  CAS  PubMed  Google Scholar 

  174. Brugieres L, et al. CD30(+) anaplastic large-cell lymphoma in children: analysis of 82 patients enrolled in two consecutive studies of the French Society of Pediatric Oncology. Blood. 1998;92(10):3591–8.

    CAS  PubMed  Google Scholar 

  175. Seidemann K, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood. 2001;97(12):3699–706.

    Article  CAS  PubMed  Google Scholar 

  176. Rosolen A, et al. Anaplastic large cell lymphoma treated with a leukemia-like therapy: report of the Italian Association of Pediatric Hematology and Oncology (AIEOP) LNH-92 protocol. Cancer. 2005;104(10):2133–40.

    Article  CAS  PubMed  Google Scholar 

  177. Lowe EJ, et al. Intensive chemotherapy for systemic anaplastic large cell lymphoma in children and adolescents: final results of Children’s Cancer Group Study 5941. Pediatr Blood Cancer. 2009;52(3):335–9.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Brugieres L, et al. Single-drug vinblastine as salvage treatment for refractory or relapsed anaplastic large-cell lymphoma: a report from the French Society of Pediatric Oncology. J Clin Oncol. 2009;27(30):5056–61.

    Article  CAS  PubMed  Google Scholar 

  179. Woessmann W, et al. Relapsed or refractory anaplastic large-cell lymphoma in children and adolescents after Berlin-Frankfurt-Muenster (BFM)-type first-line therapy: a BFM-group study. J Clin Oncol. 2011;29(22):3065–71.

    Article  PubMed  Google Scholar 

  180. Brugieres L, et al. Relapses of childhood anaplastic large-cell lymphoma: treatment results in a series of 41 children—a report from the French Society of Pediatric Oncology. Ann Oncol. 2000;11(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  181. Strullu M, et al. Hematopoietic stem cell transplantation in relapsed ALK+ anaplastic large cell lymphoma in children and adolescents: a study on behalf of the SFCE and SFGM-TC. Bone Marrow Transplant. 2015;50(6):795–801.

    Article  CAS  PubMed  Google Scholar 

  182. Laver JH, et al. Advanced-stage large-cell lymphoma in children and adolescents: results of a randomized trial incorporating intermediate-dose methotrexate and high-dose cytarabine in the maintenance phase of the APO regimen: a Pediatric Oncology Group phase III trial. J Clin Oncol. 2005;23(3):541–7.

    Article  CAS  PubMed  Google Scholar 

  183. Alexander S, et al. Advanced stage anaplastic large cell lymphoma in children and adolescents: results of ANHL0131, a randomized phase III trial of APO versus a modified regimen with vinblastine: a report from the children’s oncology group. Pediatr Blood Cancer. 2014;61(12):2236–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Le Deley MC, et al. Vinblastine in children and adolescents with high-risk anaplastic large-cell lymphoma: results of the randomized ALCL99-vinblastine trial. J Clin Oncol. 2010;28(25):3987–93.

    Article  PubMed  CAS  Google Scholar 

  185. Le Deley MC, et al. Prognostic factors in childhood anaplastic large cell lymphoma: results of a large European intergroup study. Blood. 2008;111(3):1560–6.

    Article  PubMed  CAS  Google Scholar 

  186. Lamant L, et al. Prognostic impact of morphologic and phenotypic features of childhood ALK-positive anaplastic large-cell lymphoma: results of the ALCL99 study. J Clin Oncol. 2011;29(35):4669–76.

    Article  PubMed  Google Scholar 

  187. Damm-Welk C, et al. Prognostic significance of circulating tumor cells in bone marrow or peripheral blood as detected by qualitative and quantitative PCR in pediatric NPM-ALK-positive anaplastic large-cell lymphoma. Blood. 2007;110(2):670–7.

    Article  CAS  PubMed  Google Scholar 

  188. Damm-Welk C, et al. Flow cytometric detection of circulating tumour cells in nucleophosmin/anaplastic lymphoma kinase-positive anaplastic large cell lymphoma: comparison with quantitative polymerase chain reaction. Br J Haematol. 2007;138(4):459–66.

    Article  CAS  PubMed  Google Scholar 

  189. Mussolin L, et al. Use of minimal disseminated disease and immunity to NPM-ALK antigen to stratify ALK-positive ALCL patients with different prognosis. Leukemia. 2013;27(2):416–22.

    Article  CAS  PubMed  Google Scholar 

  190. Ait-Tahar K, et al. Correlation of the autoantibody response to the ALK oncoantigen in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with tumor dissemination and relapse risk. Blood. 2010;115(16):3314–9.

    Article  CAS  PubMed  Google Scholar 

  191. Mori T, et al. Recurrent childhood anaplastic large cell lymphoma: a retrospective analysis of registered cases in Japan. Br J Haematol. 2006;132(5):594–7.

    Article  PubMed  Google Scholar 

  192. Woessmann W, et al. Allogeneic haematopoietic stem cell transplantation in relapsed or refractory anaplastic large cell lymphoma of children and adolescents—a Berlin-Frankfurt-Munster group report. Br J Haematol. 2006;133(2):176–82.

    Article  PubMed  Google Scholar 

  193. Ruf S, et al. Risk-adapted therapy for patients with relapsed or refractory ALCL—Final Report of the Prospective ALCL-Relapse Trial of the EICNHL. In: Fifth International Symposium on Childhood Adolescent and Young Adult Non-Hodgkin Lymphoma. Varese, Italy: British Journal of Haematology; 2015. p. 45.

    Google Scholar 

  194. Shaw AT, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368(25):2385–94.

    Article  CAS  PubMed  Google Scholar 

  195. Li J, et al. Insight into drug resistance mechanisms and discovery of potential inhibitors against wild-type and L1196M mutant ALK from FDA-approved drugs. J Mol Model. 2016;22(9):231.

    Article  PubMed  CAS  Google Scholar 

  196. Mosse YP, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14(6):472–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Thomas A, Teicher BA, Hassan R. Antibody-drug conjugates for cancer therapy. Lancet Oncol. 2016;17(6):e254–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Wang Y, et al. Structural insights into the pharmacophore of vinca domain inhibitors of microtubules. Mol Pharmacol. 2016;89(2):233–42.

    Article  CAS  PubMed  Google Scholar 

  199. Pro B, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol. 2012;30(18):2190–6.

    Article  CAS  PubMed  Google Scholar 

  200. Younes A, et al. Brentuximab vedotin combined with ABVD or AVD for patients with newly diagnosed Hodgkin’s lymphoma: a phase 1, open-label, dose-escalation study. Lancet Oncol. 2013;14(13):1348–56.

    Article  CAS  PubMed  Google Scholar 

  201. Cole PD, et al. Phase 2 trial of brentuximab vedotin and gemcitabine for pediatric and young adult patients with relapsed or refractory Hodgkin Lymphoma (HL): a Children’s Oncology Group (COG) report. J Clin Oncol. 2017;35:7527.

    Article  Google Scholar 

  202. Flerlage JE, et al. Pharmacokinetics, immunogenicity, and safety of weekly dosing of brentuximab vedotin in pediatric patients with Hodgkin lymphoma. Cancer Chemother Pharmacol. 2016;78(6):1217–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Mikles B, et al. Brentuximab vedotin (SGN-35) in a 3-year-old child with relapsed systemic anaplastic large cell lymphoma. J Pediatr Hematol Oncol. 2014;36(2):e85–7.

    Article  PubMed  Google Scholar 

  204. Koh KN, et al. Successful use of brentuximab vedotin for refractory anaplastic large cell lymphoma as a bridging therapy to haploidentical stem cell transplantation and maintenance therapy post-transplantation. Pediatr Blood Cancer. 2015;62(6):1063–5.

    Article  CAS  PubMed  Google Scholar 

  205. Fanale M, et al. Complete Remissions Observed in a Subset of Pediatric Patients with CD30-expressing Malignant Lymphomas Treated in Clinical Studies of Brentuximab Vedotin (SGN-35). In: European Multidisciplinary Cancer Congress; 2011; Stockholm, Sweden. p. S640.

    Google Scholar 

  206. Laimer D, et al. PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas. Nat Med. 2012;18(11):1699–704.

    Article  CAS  PubMed  Google Scholar 

  207. Tanaka H, et al. Dual therapeutic efficacy of vinblastine as a unique chemotherapeutic agent capable of inducing dendritic cell maturation. Cancer Res. 2009;69(17):6987–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Singh VK, et al. Analysis of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-reactive CD8(+) T cell responses in children with NPM-ALK(+) anaplastic large cell lymphoma. Clin Exp Immunol. 2016;186(1):96–105.

    Article  CAS  Google Scholar 

  209. Ait-Tahar K, et al. B and CTL responses to the ALK protein in patients with ALK-positive ALCL. Int J Cancer. 2006;118(3):688–95.

    Article  CAS  PubMed  Google Scholar 

  210. Chiarle R, et al. The anaplastic lymphoma kinase is an effective oncoantigen for lymphoma vaccination. Nat Med. 2008;14(6):676–80.

    Article  CAS  PubMed  Google Scholar 

  211. Thomas L. On immunosurveillance in human cancer. Yale J Biol Med. 1982;55(3–4):329–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Burnet FM. Immunological surveillance in neoplasia. Transplant Rev. 1971;7:3–25.

    CAS  PubMed  Google Scholar 

  213. Vajdic CM, et al. Are antibody deficiency disorders associated with a narrower range of cancers than other forms of immunodeficiency? Blood. 2010;116(8):1228–34.

    Article  CAS  PubMed  Google Scholar 

  214. Shapiro RS. Malignancies in the setting of primary immunodeficiency: implications for hematologists/oncologists. Am J Hematol. 2011;86(1):48–55.

    Article  PubMed  Google Scholar 

  215. Hayashi RJ, Wistinghausen B, Shiramazu B. Lymphoproliferative disorders and malignancies related to immunodeficiencies. In: Pizzo PA, Poplack DG, editors. Principles and practice of pediatric oncology. Philadelphia: Wolters Kluwers; 2016. p. 604–16.

    Google Scholar 

  216. Gross TG, Termuhlen AM. Pediatric non-Hodgkin lymphoma. Curr Hematol Malig Rep. 2008;3(3):167–73.

    Article  PubMed  Google Scholar 

  217. Styczynski J, et al. Response to rituximab-based therapy and risk factor analysis in Epstein Barr Virus-related lymphoproliferative disorder after hematopoietic stem cell transplant in children and adults: a study from the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Clin Infect Dis. 2013;57(6):794–802.

    Article  CAS  PubMed  Google Scholar 

  218. Barker JN, et al. Low incidence of Epstein-Barr virus-associated posttransplantation lymphoproliferative disorders in 272 unrelated-donor umbilical cord blood transplant recipients. Biol Blood Marrow Transplant. 2001;7(7):395–9.

    Article  CAS  PubMed  Google Scholar 

  219. Brunstein CG, et al. Umbilical cord blood transplantation after nonmyeloablative conditioning: impact on transplantation outcomes in 110 adults with hematologic disease. Blood. 2007;110(8):3064–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Dumas PY, et al. Incidence and risk factors of EBV reactivation after unrelated cord blood transplantation: a Eurocord and Societe Francaise de Greffe de Moelle-Therapie Cellulaire collaborative study. Bone Marrow Transplant. 2013;48(2):253–6.

    Article  CAS  PubMed  Google Scholar 

  221. Wistinghausen B, Gross TG, Bollard C. Post-transplant lymphoproliferative disease in pediatric solid organ transplant recipients. Pediatr Hematol Oncol. 2013;30(6):520–31.

    Article  CAS  PubMed  Google Scholar 

  222. Baker KS, et al. New malignancies after blood or marrow stem-cell transplantation in children and adults: incidence and risk factors. J Clin Oncol. 2003;21(7):1352–8.

    Article  PubMed  Google Scholar 

  223. Sanz J, Andreu R. Epstein-Barr virus-associated posttransplant lymphoproliferative disorder after allogeneic stem cell transplantation. Curr Opin Oncol. 2014;26(6):677–83.

    Article  CAS  PubMed  Google Scholar 

  224. Collins MH, et al. Autopsy pathology of pediatric posttransplant lymphoproliferative disorder. Pediatrics. 2001;107(6):E89.

    Article  CAS  PubMed  Google Scholar 

  225. Gross TG, Savoldo B, Punnett A. Posttransplant lymphoproliferative diseases. Pediatr Clin N Am. 2010;57(2):481–503, table of contents.

    Article  Google Scholar 

  226. Matthews K, et al. Indications, tolerance and complications of a sirolimus and calcineurin inhibitor immunosuppression regimen: intermediate experience in pediatric heart transplantation recipients. Pediatr Transplant. 2010;14(3):402–8.

    Article  CAS  PubMed  Google Scholar 

  227. Gibelli NE, et al. Sirolimus in pediatric liver transplantation: a single-center experience. Transplant Proc. 2009;41(3):901–3.

    Article  CAS  PubMed  Google Scholar 

  228. Weintraub L, et al. Identifying predictive factors for posttransplant lymphoproliferative disease in pediatric solid organ transplant recipients with Epstein-Barr virus viremia. J Pediatr Hematol Oncol. 2014;36(8):e481–6.

    Article  CAS  PubMed  Google Scholar 

  229. Allen UD. The ABC of Epstein-Barr virus infections. Adv Exp Med Biol. 2005;568:25–39.

    Article  CAS  PubMed  Google Scholar 

  230. San-Juan R, et al. Epstein-Barr virus-related post-transplant lymphoproliferative disorder in solid organ transplant recipients. Clin Microbiol Infect. 2014;20(Suppl 7):109–18.

    Article  PubMed  Google Scholar 

  231. Stevens SJ, Pronk I, Middeldorp JM. Toward standardization of Epstein-Barr virus DNA load monitoring: unfractionated whole blood as preferred clinical specimen. J Clin Microbiol. 2001;39(4):1211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Savoldo B, et al. Cellular immunity to Epstein-Barr virus in liver transplant recipients treated with rituximab for post-transplant lymphoproliferative disease. Am J Transplant. 2005;5(3):566–72.

    Article  CAS  PubMed  Google Scholar 

  233. Kanakry JA, et al. The clinical significance of EBV DNA in the plasma and peripheral blood mononuclear cells of patients with or without EBV diseases. Blood. 2016;127(16):2007–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Harris NL, Ferry JA, Swerdlow SH. Posttransplant lymphoproliferative disorders: summary of Society for Hematopathology Workshop. Semin Diagn Pathol. 1997;14(1):8–14.

    CAS  PubMed  Google Scholar 

  235. Miloh T, et al. T-cell PTLD presenting as acalculous cholecystitis. Pediatr Transplant. 2008;12(6):717–20.

    Article  PubMed  Google Scholar 

  236. Gross TG, et al. Low-dose chemotherapy and rituximab for posttransplant lymphoproliferative disease (PTLD): a Children’s Oncology Group Report. Am J Transplant. 2012;12(11):3069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Gulley ML, et al. Tumor origin and CD20 expression in posttransplant lymphoproliferative disorder occurring in solid organ transplant recipients: implications for immune-based therapy. Transplantation. 2003;76(6):959–64.

    Article  PubMed  Google Scholar 

  238. Ranganathan S, Jaffe R. Is there a difference between Hodgkin’s disease and a Hodgkin’s-like post-transplant lymphoproliferative disorder, and why should that be of any interest? Pediatr Transplant. 2004;8(1):6–8.

    Article  CAS  PubMed  Google Scholar 

  239. Capello D, Gaidano G. Post-transplant lymphoproliferative disorders: role of viral infection, genetic lesions and antigen stimulation in the pathogenesis of the disease. Mediterr J Hematol Infect Dis. 2009;1(2):e2009018.

    PubMed  PubMed Central  Google Scholar 

  240. Morscio J, et al. Gene expression profiling reveals clear differences between EBV-positive and EBV-negative posttransplant lymphoproliferative disorders. Am J Transplant. 2013;13(5):1305–16.

    Article  CAS  PubMed  Google Scholar 

  241. Allen U, et al. Gene expression using microarrays in transplant recipients at risk of EBV lymphoproliferation after organ transplantation: preliminary proof-of-concept. Pediatr Transplant. 2009;13(8):990–8.

    Article  CAS  PubMed  Google Scholar 

  242. Styczynski J, et al. Management of HSV, VZV and EBV infections in patients with hematological malignancies and after SCT: guidelines from the Second European Conference on Infections in Leukemia. Bone Marrow Transplant. 2009;43(10):757–70.

    Article  CAS  PubMed  Google Scholar 

  243. Humar A, et al. A randomized trial of ganciclovir versus ganciclovir plus immune globulin for prophylaxis against Epstein-Barr virus related posttransplant lymphoproliferative disorder. Transplantation. 2006;81(6):856–61.

    Article  CAS  PubMed  Google Scholar 

  244. Ghosh SK, et al. Histone deacetylase inhibitors are potent inducers of gene expression in latent EBV and sensitize lymphoma cells to nucleoside antiviral agents. Blood. 2012;119(4):1008–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Perrine SP, et al. A phase 1/2 trial of arginine butyrate and ganciclovir in patients with Epstein-Barr virus-associated lymphoid malignancies. Blood. 2007;109(6):2571–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Hayashi RJ, et al. Posttransplant lymphoproliferative disease in children: correlation of histology to clinical behavior. J Pediatr Hematol Oncol. 2001;23(1):14–8.

    Article  CAS  PubMed  Google Scholar 

  247. Gross TG, et al. Low-dose chemotherapy for Epstein-Barr virus-positive post-transplantation lymphoproliferative disease in children after solid organ transplantation. J Clin Oncol. 2005;23(27):6481–8.

    Article  CAS  PubMed  Google Scholar 

  248. Webber SA, Harmon W, Faro A, Green M, Sarwal M, Hayashi R, Canter C, Thomas D, Jaffe R, Fine R. Anti-CD20 Monoclonal Antibody (rituximab) for Refractory PTLD after Pediatric Solid Organ Transplantation: Multicenter Experience from a Registry and from a Prospective Clinical Trial. In: American Society of Hematology Annual Meeting; 2004. p. Abstract 746.

    Google Scholar 

  249. Maecker-Kohlhoff B, Beier R, Zimmermann M, Schlegelberger B, Baumann U, Mueller CM, Pape L, Reiter A, Rossig C, Schubert S, Toenshoff B, Wingen A, Meissner B, Kebelmann-Betzing C, Henze G, Kreipe HH, Klein C. Response-adapted sequential immuno-chemotherapy of post-transplant lymphoproliferative disorders in pediatric solid organ transplant recipients: results from the prospective ped-PTLD 2005 trial. In: Loewenberg B, editor. American Society of Hematology. San Francisco, CA: The American Society of Hematology; 2014. p. 4468.

    Google Scholar 

  250. van Esser JW, et al. Prevention of Epstein-Barr virus-lymphoproliferative disease by molecular monitoring and preemptive rituximab in high-risk patients after allogeneic stem cell transplantation. Blood. 2002;99(12):4364–9.

    Article  PubMed  Google Scholar 

  251. Styczynski J, et al. Outcome of treatment of Epstein-Barr virus-related post-transplant lymphoproliferative disorder in hematopoietic stem cell recipients: a comprehensive review of reported cases. Transpl Infect Dis. 2009;11(5):383–92.

    Article  CAS  PubMed  Google Scholar 

  252. Choquet S, et al. Efficacy and safety of rituximab in B-cell post-transplantation lymphoproliferative disorders: results of a prospective multicenter phase 2 study. Blood. 2006;107(8):3053–7.

    Article  CAS  PubMed  Google Scholar 

  253. Papadopoulos EB, et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med. 1994;330(17):1185–91.

    Article  CAS  PubMed  Google Scholar 

  254. Bollard CM, Rooney CM, Heslop HE. T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nat Rev Clin Oncol. 2012;9(9):510–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. O’Reilly RJ, et al. Biology and adoptive cell therapy of Epstein-Barr virus-associated lymphoproliferative disorders in recipients of marrow allografts. Immunol Rev. 1997;157:195–216.

    Article  PubMed  Google Scholar 

  256. Bollard CM, et al. Good manufacturing practice-grade cytotoxic T lymphocytes specific for latent membrane proteins (LMP)-1 and LMP2 for patients with Epstein-Barr virus-associated lymphoma. Cytotherapy. 2011;13(5):518–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Haque T, et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood. 2007;110(4):1123–31.

    Article  CAS  PubMed  Google Scholar 

  258. Doubrovina E, et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood. 2012;119(11):2644–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Leen AM, et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood. 2013;121(26):5113–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Anurathapan U, et al. Kinetics of tumor destruction by chimeric antigen receptor-modified T cells. Mol Ther. 2014;22(3):623–33.

    Article  CAS  PubMed  Google Scholar 

  261. Bollard CM, Heslop HE. T cells for viral infections after allogeneic hematopoietic stem cell transplant. Blood. 2016;127(26):3331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Vickers MA, et al. Establishment and operation of a Good Manufacturing Practice-compliant allogeneic Epstein-Barr virus (EBV)-specific cytotoxic cell bank for the treatment of EBV-associated lymphoproliferative disease. Br J Haematol. 2014;167(3):402–10.

    Article  PubMed  PubMed Central  Google Scholar 

  263. Heslop HE, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115(5):925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Naik S, et al. Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes. J Allergy Clin Immunol. 2016;137(5):1498–1505 e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. O’Reilly RJ, et al. Virus-specific T-cell banks for ‘off the shelf’ adoptive therapy of refractory infections. Bone Marrow Transplant. 2016;51(9):1163–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Dharnidharka VR, Mohanakumar T. New approaches to treating B-cell cancers induced by Epstein-Barr virus. N Engl J Med. 2015;372(6):569–71.

    Article  CAS  PubMed  Google Scholar 

  267. Ricciardelli I, et al. Towards gene therapy for EBV-associated posttransplant lymphoma with genetically modified EBV-specific cytotoxic T cells. Blood. 2014;124(16):2514–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Burkhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wistinghausen, B., Burkhardt, B. (2019). Aggressive Lymphoma in Children and Adolescents. In: Lenz, G., Salles, G. (eds) Aggressive Lymphomas. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-00362-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00362-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00361-6

  • Online ISBN: 978-3-030-00362-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics