Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In the previous chapter, brief history of the development and fundamentals of 2D materials and vdW heterostructures and the very first methods to isolate them are provided. Graphene can be considered as the funding layer for the field of 2D materials. And we are able to continuously branch out from graphene to other kinds of 2D layers, which sometimes is so called “beyond graphene” 2D layers, and also the sciences and engineering behind them. A heterostructure made of 2D semiconducting materials is an important remark toward flexible and low-power optoelectronics in the future. Analogously, 2D TMDCs represent a new class of building blocks. By combining certain of them, interesting physical sciences and practical applications can be created out of our hands. However, current methods for making a vdW heterostructure may not always provide good material interfaces. This challenge inspired my graduate research on synthetic 2D layers and their heterostructures and discovery of their properties. This chapter covers some practical aspects of thin-film deposition and also methods used for depositing 2D TMDC domains and films. The transport mechanism for 2D material devices is dominated by a few scattering events, which a lot of time are related to the interface of 2D materials and their substrates. This chapter, therefore, provides all necessary knowledges that are not all included in the later chapter which focused on the properties, devices of synthetic 2D layers, 2D/2D vdW heterostructures, and 2D/3D heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, D.: Thin-film deposition: principles and practice. McGraw-Hill, New York (1995)

    Google Scholar 

  2. Ohring, M.: Materials science of thin films : deposition and structure. Academic, New York (2002)

    Google Scholar 

  3. Gupta, P., et al.: Layered transition metal dichalcogenides: promising near- lattice-matched substrates for GaN growth. Sci. Rep. 6, 23708 (2016). 

    Google Scholar 

  4. Zhang, C., et al.: Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures. 2D Mater. 4, 015026 (2016)

    Article  Google Scholar 

  5. Das, S., Robinson, J.A., Dubey, M., Terrones, H., Terrones, M.: Beyond graphene: progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 45, 1–27 (2015)

    Article  ADS  Google Scholar 

  6. Lin, Y.-C., et al.: Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale. 4, 1–8 (2012)

    Google Scholar 

  7. Lee, Y.-H., et al.: Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012)

    Article  Google Scholar 

  8. Li, H., Li, Y., Aljarb, A., Shi, Y., Li, L.-J.: Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: growth mechanism, controllability, and scalability. Chem. Rev. 118, 6134–6150 (2017)

    Article  Google Scholar 

  9. Vilá, R.A., et al.: Bottom-up synthesis of vertically oriented two-dimensional materials. 2D Mater. 3, 041003 (2016)

    Article  Google Scholar 

  10. Kang, K., et al.: High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature. 520, 656–660 (2015)

    Article  ADS  Google Scholar 

  11. Eichfeld, S.M., et al.: Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. ACS Nano. 9, 2080–2087 (2015)

    Article  Google Scholar 

  12. Zhang, X., et al.: Influence of carbon in metalorganic chemical vapor deposition of few-layer WSe2 thin films. J. Electron. Mater. 45, 6273–6279 (2016)

    Google Scholar 

  13. de Heer, W.A., et al.: Epitaxial graphene. Solid State Commun. 143, 92–100 (2007)

    Article  ADS  Google Scholar 

  14. Van Bommel, A.J., Crombeen, J.E., Van Tooren, A.: LEED and Auger electron observations of the SiC(0001) surface. Surf. Sci. 48, 463–472 (1975)

    Article  ADS  Google Scholar 

  15. de Heer, W.A., et al.: Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. U. S. A. 108, 16900–16905 (2011)

    Article  ADS  Google Scholar 

  16. Forti, S., Starke, U.: Epitaxial graphene on SiC: from carrier density engineering to quasi-free standing graphene by atomic intercalation. J. Phys. D. Appl. Phys. 47, 094013 (2014)

    Article  ADS  Google Scholar 

  17. Lin, Y.-C., et al.: Direct synthesis of van der Waals solids. ACS Nano. 8, 3715–3723 (2014)

    Article  Google Scholar 

  18. Kroemer, H.: Heterostructure bipolar transistors and integrated circuits. Proc. IEEE. 70, 13–25 (1982)

    Article  ADS  Google Scholar 

  19. Van der Koma, A.: Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth. 201–202, 236–241 (1999)

    Article  ADS  Google Scholar 

  20. Yang, W., et al.: Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013)

    Article  ADS  Google Scholar 

  21. Ago, H., et al.: Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene. ACS Appl. Mater. Interfaces. 7, 5265–5273 (2015)

    Article  Google Scholar 

  22. Lin, Y.-C., et al.: Atomically thin heterostructures based on single-layer tungsten diselenide and graphene. Nano Lett. 14, 6936–6941 (2014)

    Article  ADS  Google Scholar 

  23. Lin, Y.-C., et al.: Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun. 6, 7311 (2015)

    Article  Google Scholar 

  24. Gong, Y., et al.: Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014)

    Google Scholar 

  25. Li, M.-Y., et al.: Nanoelectronics. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science. 349, 524–528 (2015)

    Google Scholar 

  26. Shi, Y., et al.: van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012)

    Article  ADS  Google Scholar 

  27. Zhang, K., Lin, Y.-C., Robinson, J.A.: Semiconductors and semimetals, vol. 95, pp. 189–219. Elsevier, Amsterdam (2016)

    Google Scholar 

  28. Bradley, A.J., et al.: Probing the role of interlayer coupling and coulomb interactions on electronic structure in few-layer MoSe2 nanostructures. Nano Lett. 15, 2594–2599 (2015)

    Article  ADS  Google Scholar 

  29. Tan, C., Zhang, H.: Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J. Am. Chem. Soc. 137, 12162–12174 (2015)

    Article  Google Scholar 

  30. Ugeda, M.M., et al.: Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014)

    Article  ADS  Google Scholar 

  31. Jung, Y., Shen, J., Sun, Y., Cha, J.J.: Chemically synthesized heterostructures of two-dimensional molybdenum/tungsten-based dichalcogenides with vertically aligned layers. ACS Nano. 8, 9550–9557 (2014)

    Article  Google Scholar 

  32. Kang, J., Liu, W., Sarkar, D., Jena, D., Banerjee, K.: Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X. 4, 031005 (2014)

    Google Scholar 

  33. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)

    Article  ADS  Google Scholar 

  34. Yoon, Y., Ganapathi, K., Salahuddin, S.: How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768–3773 (2011)

    Article  ADS  Google Scholar 

  35. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)

    Article  ADS  Google Scholar 

  36. Fiori, G., et al.: Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014)

    Article  ADS  Google Scholar 

  37. Xie, L., et al.: Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater. 29, (2017). https://doi.org/10.1002/adma.201702522

    Article  Google Scholar 

  38. Robinson, J.A., et al.: Epitaxial graphene transistors: enhancing performance via hydrogen intercalation. Nano Lett. 11, 3875–3880 (2011)

    Article  ADS  Google Scholar 

  39. Yu, H., et al.: Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano. 11, 12001–12007 (2017)

    Article  Google Scholar 

  40. Kang, K., et al.: Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature. 550, 229–233 (2017)

    Article  ADS  Google Scholar 

  41. Li, S., et al.: Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today. 1, 60–66 (2015)

    Google Scholar 

  42. Chen, J., et al.: Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J. Am. Chem. Soc. 139, 1073–1076 (2017)

    Article  Google Scholar 

  43. Yang, P., et al.: Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 9, 979 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, YC. (2018). Synthesis and Properties of 2D Semiconductors. In: Properties of Synthetic Two-Dimensional Materials and Heterostructures. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-00332-6_2

Download citation

Publish with us

Policies and ethics