Skip to main content

Using Fuzzy Cognitive Maps to Arouse Learning Processes in Cities

  • Chapter
  • First Online:
Designing Cognitive Cities

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 176))

Abstract

Processing information in a city is simultaneously a primary task and a pivotal challenge. Urban data are usually expressed in natural language and thus imprecise but can contain relevant information that should be processed to advance the city. Fuzzy cognitive maps (FCMs) can be used to model interconnected and imprecise urban data and are therefore suitable to both address this challenge and to fulfil the primary task. Cognitive cities are based on connectivism, which assumes that knowledge is built through the experiences and perceptions of different people. Hence, the design of a cognitive learning process in a city is crucial. In this article, the current state-of-the-art research in the field of FCMs and FCMs combined with learning algorithms is presented based on an extensive literature review and grounded theory. In total, 59 research papers were gathered and analyzed. The results show that the application of FCMs already facilitates the acquisition and representation of urban data and, thus, helps to make a city smarter. However, using FCMs combined with learning algorithms optimizes this smartness and helps to foster the development of cognitive cities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cf. https://scholar.google.ch/.

  2. 2.

    Cf. http://www.sciencedirect.com/.

  3. 3.

    Cf. http://dl.acm.org/.

  4. 4.

    Cf. https://www.google.ch/.

  5. 5.

    Please note: the left column always states the source and the right the applied field.

  6. 6.

    Please note: the left column always states the source, the middle column the applied field and the right the employed learning algorithm.

References

  • Acampora G, Loia V (2009) A dynamical cognitive multi-agent system for enhancing ambient intelligence scenarios. In: IEEE International Conference on Fuzzy Systems, 2009. FUZZ-IEEE 2009. IEEE

    Google Scholar 

  • Acampora G, Loia V, Vitiello A (2011) Distributing emotional services in ambient intelligence through cognitive agents. SOCA 5(1):17–35

    Article  Google Scholar 

  • Aguilar J (2013) Different dynamic causal relationship approaches for cognitive maps. Appl Soft Comput 13:271–282

    Article  Google Scholar 

  • Altay A, Kayakutlu G (2011) Fuzzy cognitive mapping in factor elimination: a case study for innovative power and risks. Procedia Comput Sci 3:1111–1119

    Article  Google Scholar 

  • Andreou AS, Mateou NH, Zombanakis GA (2005) Soft computing for crisis management and political decision making: the use of genetically evolved fuzzy cognitive maps. Soft Comput 9(3):194–210

    Article  Google Scholar 

  • Banini GA, Bearman RA (1998) Application of fuzzy cognitive maps to factors affecting slurry rheology. Int J Miner Process 52(4):233–244

    Article  Google Scholar 

  • Baykasoglu A, Durmusoglu ZDU, Kaplanoglu V (2011) Training fuzzy cognitive maps via extended great deluge algorithm with applications. Comput Ind 62(2):187–195

    Article  Google Scholar 

  • Beena P, Ganguli R (2011) Structural damage detection using fuzzy cognitive maps and Hebbian learning. Appl Soft Comput 11(1):1014–1020

    Article  Google Scholar 

  • Bertolini M (2007) Assessment of human reliability factors: a fuzzy cognitive maps approach. Int J Ind Ergon 37(5):405–413

    Article  MathSciNet  Google Scholar 

  • Cai Y, Miao C, Tan AH, Shen Z, Li B (2010) Creating an immersive game world with evolutionary fuzzy cognitive maps. IEEE Comput Graph Appl 30(2):58–70

    Article  Google Scholar 

  • Campbell T (2009) Learning cities: knowledge, capacity and competitiveness. Habitat Int 33(2):195–201

    Article  Google Scholar 

  • Chen H, Chiang RH, Storey VC (2012) Business intelligence and analytics: from big data to big impact. MIS Q 36(4):1165–1188

    Article  Google Scholar 

  • Chytas P, Glykas M, Valiris G (2011) A proactive balanced scorecard. Int J Inf Manage 31(5):460–468

    Article  Google Scholar 

  • Çoban O, Seçme G (2005) Prediction of socio-economical consequences of privatization at the firm level with fuzzy cognitive mapping. Inf Sci 169(1):131–154

    MATH  Google Scholar 

  • Dickerson JA, Kosko B (1994) Virtual worlds as fuzzy cognitive maps. Presence Teleoperators Virtual Environ 3(2):173–189

    Article  Google Scholar 

  • D’Onofrio S, Portmann E (2015) Von Fuzzy-Sets zu Computing-with-Words. Informatik-Spektrum 38:1–7

    Article  Google Scholar 

  • D’Onofrio S, Portmann E, Kaltenrieder P, Myrach T (2016) Enhanced knowledge management by synchronizing mind maps and fuzzy cognitive maps. In: International conference on fuzzy management methods. Fribourg, Switzerland

    Google Scholar 

  • D’Onofrio S, Wehrle M, Portmann E (2017) Striving for semantic convergence. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2017), Naples, Italy (Submitted)

    Google Scholar 

  • Downs RM, Stea D (1973) Cognitive maps and spatial behavior. Image and environment. Aldine Publishing Company, Chicago

    Google Scholar 

  • Froelich W, Wakulicz-Deja A (2009) Mining temporal medical data using adaptive fuzzy cognitive maps. In: 2nd conference on human system interactions, 2009. HIS 2009. IEEE

    Google Scholar 

  • Georgopoulos, Voula C, Georgia A Malandraki, Chrysostomos D Stylios (2003) A fuzzy cogni-tive map approach to differential diagnosis of specific language impairment. Artif intell Med 29(3):261–278

    Article  Google Scholar 

  • Georgiou DA, Botsios SD (2008) Learning style recognition: a three layers fuzzy cognitive map schema. In: IEEE international conference on fuzzy systems, 2008. FUZZ-IEEE 2008. IEEE (IEEE World Congress on Computational Intelligence)

    Google Scholar 

  • Gerstner W, Kempter R, van Hemmen JL, Wagner H (1999) Pulsed neural networks, chapter hebbian learning of pulse timing in the barn owl auditory system. Bradford Books, MIT Press, Cambridge

    Google Scholar 

  • Giles BG, Findlay CS, Haas G, LaFrance B, Laughing W, Pembleton S (2007) Integrating conventional science and aboriginal perspectives on diabetes using fuzzy cognitive maps. Soc Sci Med 64(3):562–576

    Article  Google Scholar 

  • Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99

    Article  Google Scholar 

  • Goodchild MF (2007) Citizens as Sensors: Web 2.0 and the volunteering of geographic information. GeoFocus (Editorial) 7:8–10

    Google Scholar 

  • Hanafizadeh P, Aliehyaei R (2011) The application of fuzzy cognitive map in soft system methodology. Syst Pract Action Res 24(4):325–354

    Article  Google Scholar 

  • Hobbs JR (1985) Granularity. In: Proceedings of international joint conference on artificial intelligence (IJCAI), Los Angeles, CA, pp 432–435

    Google Scholar 

  • Hossain S, Brooks L (2008) Fuzzy cognitive map modelling educational software adoption. Comput Educ 51(4):1569–1588

    Article  Google Scholar 

  • Hurwitz JS, Kaufman M, Bowles A (2015) Cognitive computing and big data analytics. Wiley, Hoboken, New Jersey

    Google Scholar 

  • Iakovidis DK, Papageorgiou E (2011) Intuitionistic fuzzy cognitive maps for medical decision making. IEEE Trans Inf Technol Biomed 15(1):100–107

    Article  Google Scholar 

  • Innocent PR, John RI (2004) Computer aided fuzzy medical diagnosis. Inf Sci 162(2):81–104

    Article  Google Scholar 

  • Irani Z, Sharif A, Love PE, Kahraman C (2002) Applying concepts of fuzzy cognitive mapping to model: the IT/IS investment evaluation process. Int J Prod Econ 75(1):199–211

    Article  Google Scholar 

  • Jetter A, Schweinfort W (2011) Building scenarios with Fuzzy Cognitive Maps: an exploratory study of solar energy. Futures 43(1):52–66

    Article  Google Scholar 

  • Kaltenrieder P, D’Onofrio S, Portmann E (2015) Enhancing multidirectional communication for cognitive cities. In: 2nd international conference on eDemocracy & eGovernment (ICEDEG). IEEE, pp 38–43

    Google Scholar 

  • Kaltenrieder P, Altun T, D’Onofrio S, Portmann E, Myrach T (2016) Personal digital assistant 2.0 –a software prototype for cognitive cities. In: IEEE international conference on fuzzy systems (FUZZ-IEEE 2016), Vancouver, Canada

    Google Scholar 

  • Kang I, Lee S, Choi J (2004) Using fuzzy cognitive map for the relationship management in airline service. Expert Syst Appl 26(4):545–555

    Article  Google Scholar 

  • Kannappan A, Tamilarasi A, Papageorgiou EI (2011) Analyzing the performance of fuzzy cognitive maps with non-linear hebbian learning algorithm in predicting autistic disorder. Expert Syst Appl 38(3):1282–1292

    Article  Google Scholar 

  • Kardaras D, Karakostas B (1999) The use of fuzzy cognitive maps to simulate the information systems strategic planning process. Inf Softw Technol 41(4):197–210

    Article  Google Scholar 

  • Kelly III JE (2015) Computing, cognition and the future of knowing. How humans and machines are forging a new age of understanding. IBM Research

    Google Scholar 

  • Kim MC, Kim CO, Hong SR, Kwon IH (2008) Forward-backward analysis of RFID-enabled supply chain using fuzzy cognitive map and genetic algorithm. Expert Syst Appl 35(3):1166–1176

    Article  Google Scholar 

  • Kok K (2009) The potential of fuzzy cognitive maps for semi-quantitative scenario development, with an example from Brazil. Glob Environ Change 19(1):122–133

    Article  Google Scholar 

  • Kok JL, Titus M, Wind HG (2000) Application of fuzzy sets and cognitive maps to incorporate social science scenarios in integrated assessment models. A case study of urbanization in Ujung Pandang, Indonesia. Integr Assess 1(3):177–188

    Article  Google Scholar 

  • Kosko B (1986) Fuzzy cognitive maps. Int J Man Mach Stud 24(1):65–75

    Article  MATH  Google Scholar 

  • Kottas T, Boutalis Y, Diamantis V, Kosmidou O, Aivasidis A (2006) A fuzzy cognitive network based control scheme for an anaerobic digestion process. In: 14th Mediterranean conference on control and automation, 2006. MED 2006. IEEE

    Google Scholar 

  • Kurgan LA, Stach W, Ruan J (2007) Novel scales based on hydrophobicity indices for secondary protein structure. J Theor Biol 248(2):354–366

    Article  Google Scholar 

  • Laird L (1919) The law of parsimony. Monist 29(3):321–344

    Article  Google Scholar 

  • Lazzerini B, Mkrtchyan L (2010) Risk analysis using extended fuzzy cognitive maps. In: 2010 international conference on intelligent computing and cognitive informatics (ICICCI). IEEE

    Google Scholar 

  • Lee KC, Kim JS, Chung NH, Kwon SJ (2002) Fuzzy cognitive map approach to web-mining inference amplification. Expert Syst Appl 22:197–211

    Article  Google Scholar 

  • Lee S, Kim BG, Lee K (2004) Fuzzy cognitive map-based approach to evaluate EDI performance: a test of causal model. Expert Syst Appl 27(2):287–299

    Article  Google Scholar 

  • Lo Storto C (2010) Assessing ambiguity tolerance in staffing software development teams by analyzing cognitive maps of engineers and technical managers. In: 2nd international conference on engineering systems management and its applications (ICESMA), 2010. IEEE

    Google Scholar 

  • Lu W, Yang J, Li Y (2010) Control method based on fuzzy cognitive map and its application on district heating network. In: International conference on intelligent control and information processing (ICICIP), 2010. IEEE

    Google Scholar 

  • Luo X, Wei X, Zhang J (2009) Game-based learning model using fuzzy cognitive map. In: Proceedings of the first ACM international workshop on multimedia technologies for distance learning. New York, ACM

    Google Scholar 

  • Luo X, Wei X, Zhang J (2010) Guided game-based learning using fuzzy cognitive maps. IEEE Trans Learn Technol 3(4):344–357

    Article  Google Scholar 

  • Malone TW, Bernstein MS (2015) Handbook of collective intelligence. MIT Press, Cambridge

    Google Scholar 

  • Miao C, Yang Q, Fang H, Goh A (2007) A cognitive approach for agent-based personalized recommendation. Knowl-Based Syst 20(4):397–405

    Article  Google Scholar 

  • Mostashari A, Arnold F, Mansouri M, Finger M (2011) Cognitive cities and intelligent urban governance. Netw Ind Q 13(3):4–7

    Google Scholar 

  • Papageorgiou EI (2011) A new methodology for decisions in medical informatics using fuzzy cognitive maps based on fuzzy rule-extraction techniques. Appl Soft Comput 11(1):500–513

    Article  Google Scholar 

  • Papageorgiou EI (2012) Learning algorithms for fuzzy cognitive maps—a review study. IEEE Trans Syst Man Cybern Part C Appl Rev 42(2)

    Article  Google Scholar 

  • Papageorgiou EI, Salmeron JL (2013) A review of fuzzy cognitive maps research during the last decade. IEEE Trans Fuzzy Syst 21(1):66–79

    Article  Google Scholar 

  • Papageorgiou EI, Stylios CD, Groumpos PP (2004) Active Hebbian learning algorithm to train fuzzy cognitive maps. Int J Approx Reason 37(3):219–249

    Article  MathSciNet  MATH  Google Scholar 

  • Papageorgiou EI, Stylios CD, Groumpos PP (2006) Unsupervised learning techniques for fine-tuning fuzzy cognitive map causal links. Int J Hum Comput Stud 64(8):727–743

    Article  Google Scholar 

  • Papageorgiou EI, Stylios CD, Groumpos PP (2009) A fuzzy cognitive map based tool for prediction of infectious diseases. In: IEEE international conference on fuzzy systems, 2009. FUZZ-IEEE 2009. IEEE

    Google Scholar 

  • Parenthoen M, Reignier P, Tisseau J (2001) Put fuzzy cognitive maps to work in virtual worlds. In: The 10th IEEE international conference on fuzzy systems, 2001, vol 1. IEEE

    Google Scholar 

  • Peláez CE, Bowles JB (1996) Using fuzzy cognitive maps as a system model for failure modes and effects analysis. Inf Sci 88(1–4):177–199

    Google Scholar 

  • Portmann E, Finger M (2015) Smart Cities–Ein Ăśberblick! HMD Praxis der Wirtschaftsinformatik 1–12

    Google Scholar 

  • Rodin V, Querrec G, Ballet P, Bataille FR, Desmeulles G, Abgrall JF, Tisseau J (2009) Multi-agents system to model cell signalling by using fuzzy cognitive maps. Application to computer simulation of multiple myeloma. In: 9th IEEE international conference on bioinformatics and bioengineering, 2009. BIBE 2009. IEEE

    Google Scholar 

  • Rodriguez-Repiso L, Setchi R, Salmeron JL (2007) Modelling IT projects success with fuzzy cognitive maps. Expert Syst Appl 32:543–559

    Article  Google Scholar 

  • Saaty TL (1996) Decision making with dependence and feedback: the analytic network process. RWS Publications, Pittsburgh

    Google Scholar 

  • Salmeron JL (2009) Supporting decision makers with fuzzy cognitive maps. Res Technol Manag 52(3):53–59

    Article  Google Scholar 

  • Salmeron JL, Lopez C (2012) Forecasting risk impact on ERP maintenance with augmented fuzzy cognitive maps. IEEE Trans Softw Eng 38(2):439–452

    Article  Google Scholar 

  • Sharif AM, Irani Z (2006) Exploring fuzzy cognitive mapping for IS evaluation. Eur J Oper Res 173(3):1175–1187

    Article  MATH  Google Scholar 

  • Siemens G (2005) Connectivism: a learning theory for the digital age. Int J Instr Technol Distance Learn 2(1):3–10

    Google Scholar 

  • Skov F, Svenning JC (2003) Predicting plant species richness in a managed forest. For Ecol Manage 180:583–593

    Article  Google Scholar 

  • Strauss A, Corbin J (1994) Grounded theory methodology. Handb Qual Res 17:73–85

    Google Scholar 

  • Stylios CD, Groumpos PP (1999) A soft computing approach for modelling the supervisor of manufacturing systems. J Intell Rob Syst 26(3):389–403

    Article  Google Scholar 

  • Stylios CD, Georgopoulos VC (2008) Fuzzy cognitive maps structure for medical decision support systems. Forging new frontiers. Fuzzy pioneers II. Springer, Berlin

    Google Scholar 

  • Tan CO, Ă–zesmi U (2006) A generic shallow lake ecosystem model based on collective expert knowledge. Hydrobiologica 563(1):125–142

    Article  Google Scholar 

  • Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55(4):15–64

    Article  Google Scholar 

  • Trappey AJC, Trappey CV, Wu CR (2010) Genetic algorithm dynamic performance evaluation for RFID reverse logistic management. Expert Syst Appl 37(11):7329–7335

    Article  Google Scholar 

  • van Vliet M, Kok K, Veldkamp T (2010) Linking stakeholders and modellers in scenario studies: the use of fuzzy cognitive maps as a communication and learning tool. Futures 42(1):1–14

    Article  Google Scholar 

  • Webster J, Watson RT (2002) Analyzing the past to prepare for the future: writing a literature review. MIS quarterly

    Google Scholar 

  • Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85

    Article  Google Scholar 

  • Xirogiannis G, Glykas M (2007) Intelligent modeling of e-business maturity. Expert Syst Appl 32(2):687–702

    Article  Google Scholar 

  • Xirogiannis G, Stefanou J, Glykas M (2004) A fuzzy cognitive map approach to support urban design. Expert Syst Appl 26(2):257–268

    Article  Google Scholar 

  • Yaman D, Polat S (2009) A fuzzy cognitive map approach for effect-based operations: an illustrative case. Inf Sci 179(4):382–403

    Article  Google Scholar 

  • Yu R, Tzeng GH (2006) A soft computing method for multi-criteria decision making with dependence and feedback. Appl Math Comput 180(1):63–75

    MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  • Zadeh LA (1988) Fuzzy logic. Computer 21(4):83–93

    Article  Google Scholar 

  • Zadeh LA (1996) Fuzzy logic = computing with words. IEEE Trans Fuzzy Syst 4(2):103–111

    Article  Google Scholar 

  • Zadeh LA (1998) Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems. Soft Comput 2:23–25

    Article  Google Scholar 

  • Zadeh LA (2006) From search engines to question answering systems—the problems of world knowledge, relevance, deduction and precisiation. In: E. Sanchez (ed) Fuzzy logic and the semantic web, pp 163–210

    Google Scholar 

  • Zadeh LA (2008) Is there a need for fuzzy logic? Inf Sci 178:2751–2779

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (2011) Computing with words—principal concepts and ideas. Studies in fuzziness and soft computing. Springer, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara D’Onofrio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’Onofrio, S., Papageorgiou, E., Portmann, E. (2019). Using Fuzzy Cognitive Maps to Arouse Learning Processes in Cities. In: Portmann, E., Tabacchi, M., Seising, R., Habenstein, A. (eds) Designing Cognitive Cities. Studies in Systems, Decision and Control, vol 176. Springer, Cham. https://doi.org/10.1007/978-3-030-00317-3_5

Download citation

Publish with us

Policies and ethics