Skip to main content

Appendix to Part I: The AVC and AVWC

  • Chapter
  • First Online:
Probabilistic Methods and Distributed Information

Part of the book series: Foundations in Signal Processing, Communications and Networking ((SIGNAL,volume 15))

  • 625 Accesses

Abstract

In this lecture, Holger Boche and Ahmed Mansour give a quick overview about the arbitrarily varying channel (AVC) and its corresponding wiretap channel (AVWC). We then highlight some of the code concepts used for such channels and focus on the concept of list decoding. Finally, we present some coding theorems for reliable and secure communication over AVCs and AVWCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Csiszár, P. Narayan, The capacity of arbitrarily channels revisited, positivity, constraints. IEEE Trans. Inf. Theory 34, 181–193 (1988)

    Article  MathSciNet  Google Scholar 

  2. V.M. Blinovsky, O. Narayan, M.S. Pinsker, Capacity of the arbitrarily varying channel under list decoding. Probl. Inf. Transm. 31, 99–113 (1995), translated from Problemy Peredačii Informacii 31(2), 3–19 (1995)

    Google Scholar 

  3. B.L. Hughes, The smallest list for arbitrarily varying channel. IEEE Trans. Inf. Theory 43(3), 803–815 (1997)

    Article  MathSciNet  Google Scholar 

  4. D. Blackwell, L. Breiman, A.J. Thomasian, The capacities of certain channel classes under random coding. Ann. Math. Stat. 31, 558–567 (1960)

    Article  Google Scholar 

  5. R. Ahlswede, Elimination of correlation in random codes for arbitrarily varying channels. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 33, 159–175 (1978)

    Article  MathSciNet  Google Scholar 

  6. I. Bjelaković, H. Boche, J. Sommerfeld, Capacity results for arbitrarily varying wiretap channels, Information Theory, Combinatorics, and Search Theory (Springer, New York, 2013), pp. 123–144

    Chapter  Google Scholar 

  7. M. Wiese, J. Nötzel, H. Boche, A channel under simultaneous jamming and eavesdropping attack - correlated random coding capacities under strong secrecy criteria. IEEE Trans. Inf. Theory 62(7), 3844–3862 (2016)

    Article  MathSciNet  Google Scholar 

  8. J. Nötzel, M. Wiese, H. Boche, The arbitrarily varying wiretap channel - secret randomness, stability, and super-activation. IEEE Trans. Inf. Theory 62(6), 3504–3531 (2016)

    Article  MathSciNet  Google Scholar 

  9. A.S. Mansour, H. Boche, R.F. Schaefer, Stabilizing the secrecy capacity of the arbitrarily varying wiretap channel and transceiver synchronization using list decoding, in IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan (2017), pp. 1–5

    Google Scholar 

  10. A.S. Mansour, H. Boche, R.F. Schaefer, Secrecy capacity under list decoding for a channel with a passive eavesdropper and an active jammer, in IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Alberta, Canada (2018)

    Google Scholar 

  11. C.E. Shannon, The zero error capacity of a noisy channel. IRE Trans. Inf. Theory IT–2, 8–19 (1956)

    Article  MathSciNet  Google Scholar 

  12. W. Haemers, On some problems of Lovasz concerning the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(2), 231–232 (1979)

    Article  MathSciNet  Google Scholar 

  13. N. Alon, The Shannon capacity of a union. Combinatorica 18(3), 301–310 (1998)

    Article  MathSciNet  Google Scholar 

  14. P. Keevash, E. Long, On the normalized Shannon capacity of a union. Comb. Probab. Comput. 25(5), 766–767 (2016)

    Article  MathSciNet  Google Scholar 

  15. R. Ahlswede, A note on the existence of the weak capacity for channels with arbitrarily varying probability functions and its relation to Shannon’s zero error capacity. Ann. Math. Stat. 41, 1027–1033 (1970)

    Article  MathSciNet  Google Scholar 

  16. H. Boche, R.F. Schaefer, H.V. Poor, Analytical properties of Shannon’s capacity of arbitrarily varying channels under list decoding: super-additivity and discontinuity behavior (2018)

    Google Scholar 

  17. H. Boche, R.F. Schaefer, H.V. Poor, On the continuity of the secrecy capacity of compound and arbitrarily varying wiretap channels. IEEE Trans. Inf. Forensics Secur. 10(12), 2531–2546 (2015)

    Article  Google Scholar 

  18. R.F. Schaefer, H. Boche, H.V. Poor, Super-activation as a unique feature of arbitrarily varying wiretap channels, in 2016 IEEE International Symposium on Information Theory (ISIT) (2016), pp. 3077–3081

    Google Scholar 

  19. G. Giedke, M.M. Wolf, Quantum communication: super-activated channels. Nat. Photonics 5(10), 578–580 (2011)

    Article  Google Scholar 

  20. R.F. Schaefer, H. Boche, H.V. Poor, Super-activation as a unique feature of secure communication in malicious environments. Information 7(24) (2016)

    Article  Google Scholar 

  21. R. Ahlswede, G. Dueck, Identification via channels. IEEE Trans. Inf. Theory 35(1), 15–29 (1989)

    Article  MathSciNet  Google Scholar 

  22. H. Boche, C. Deppe, Secure identification for wiretap channels; robustness, super-additivity and continuity. IEEE Trans. Inf. Forensics Secur. 13(7) (2018)

    Article  Google Scholar 

  23. R. Ahlswede, Z. Zhang, New directions in the theory of identification via channels. IEEE Trans. Inf. Theory 41(4), 1040–1050 (1995)

    Article  Google Scholar 

  24. H. Boche, C. Deppe, Secure identification under passive eavesdroppers and active jamming attacks. IEEE Trans. Inf. Forensics Secur (2018)

    Google Scholar 

  25. A.D. Sarwate, Robust and adaptive communication under uncertain interference. Ph.D. dissertation, EECS Department, University of California, Berkeley (2008)

    Google Scholar 

  26. A.D. Sarwate, M. Gastpar, Channels with nosy noise, in IEEE International Symposium on Information Theory, Nice, France (2007), pp. 996–1000

    Google Scholar 

  27. A.D. Sarwate, An AVC perspective on correlated jamming, in International Conference on Signal Processing and Communications (SPCOM) (2012), pp. 1–5

    Google Scholar 

  28. R. Ahlswede, The maximal error capacity of arbitrarily varying channels for constant list size. IEEE Trans. Inf. Theory 39, 1416–1417 (1993)

    Article  MathSciNet  Google Scholar 

  29. A.D. Sarwate, M. Gastpar, List-decoding for the arbitrarily varying channel under state constraints. IEEE Trans. Inf. Theory 58(3), 1372–1384 (2012)

    Article  MathSciNet  Google Scholar 

  30. H. Boche, M. Cai, N. Cai, Message transmission over classical quantum channels with a jammer with side information: message transmission capacity and resources (2018), arXiv:1801.10550

  31. I. Bjelakovic, H. Boche, Classical capacities of compound and averaged quantum channels. IEEE Trans. Inf. Theory 55(7), 3360–3374 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Ahlswede .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahlswede, R. (2019). Appendix to Part I: The AVC and AVWC. In: Ahlswede, A., Althöfer, I., Deppe, C., Tamm, U. (eds) Probabilistic Methods and Distributed Information. Foundations in Signal Processing, Communications and Networking, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-00312-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00312-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00310-4

  • Online ISBN: 978-3-030-00312-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics