Skip to main content

The Influence of Square Wire Attack Angle on the Heat Convection from a Surrogate PV Panel

  • Conference paper
  • First Online:
Book cover The Energy Mix for Sustaining Our Future (EAS 2018 2018)

Part of the book series: Springer Proceedings in Energy ((SPE))

Included in the following conference series:

  • 470 Accesses

Abstract

Passively enhancing the convective cooling of solar photovoltaics (PV) panels by the prevailing atmospheric wind is possibly the simplest and yet an effective means to boost solar energy production. Among the numerous ways to promote turbulent convective cooling, the conventional tripwire concept is straightforward to implement. The square wire with sharp edges placed at varying angles of attack is explored for its effectiveness in augmenting the convective cooling of a surrogate PV panel. Specifically, the heat transfer performance over an approximately constant temperature flat plate downstream of a 4 mm2 wire, placed at 6 mm from the flat surface, with 15° to 75° attack angle is scrutinized in a wind tunnel at 5 m/s wind velocity. The resulting local Nusselt number enhancement is explained in terms of the perturbed turbulent flow characteristics, detailed using a triple-wire constant-temperature hot wire. A higher level of turbulence along with more energetic and larger energy-containing eddying motions are captured behind the 60° attack angle wire, contributing to the most efficacious cooling of the surrogate PV panel. These results translate into 2–3% increase in the PV panel energy output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( A \) :

Area of the PTFE plate

\( D \) :

Width of the square wire

E :

Uncertainty

F :

Frequency

\( G_{T} \) :

Solar irradiance

\( h \) :

Heat transfer coefficient

\( K_{air} \) :

Thermal conductivity of air

\( K_{PTFE} \) :

Thermal conductivity of PTFE plate

\( Re \) :

Reynolds number

\( Nu \) :

Nusselt number

\( Nu_{0} \) :

Nusselt number without the square wire

\( P \) :

Electric power output

\( P_{0} \) :

Electric power output without the square wire

\( PTFE \) :

Polytetrafluoroethylene

PV :

Solar photovoltaics

\( Q_{convection} \) :

Convective heat transfer

\( Q_{radiation} \) :

Radiation heat transfer

\( Q_{total} \) :

Total heat transfer

St :

Strouhal Number

\( T_{air} \) :

Temperature of the ambient air

\( T_{c} \) :

Cell temperature of PV panel

\( T_{bottom} \) :

Temperature of the bottom surface of the PTFE plate

\( T_{ref} \) :

Reference temperature

\( T_{top} \) :

Temperature of the top surface of the PTFE plate

\( T_{top,0} \) :

Temperature of the top surface of the PTFE plate without the wire

\( T_{wall} \) :

Wall temperature of the wind tunnel

\( t_{PTFE} \) :

Thickness of the PTFE plate

\( Tu,Tv,Tw \) :

Turbulence intensity in X, Y, and Z direction, respectively

\( U,V,W \) :

Instantaneous velocity in X, Y, and Z direction, respectively

\( \bar{U},\bar{V},\bar{W} \) :

Time-averaged velocity in X, Y, and Z direction, respectively

\( U_{\infty } \) :

Free stream velocity in X direction

\( u,v,w \) :

Instantaneous fluctuating velocity in X, Y, and Z direction, respectively

\( u_{rms} ,v_{rms} ,w_{rms} \) :

Root mean square velocity in X, Y, and Z direction, respectively

\( X \) :

Streamwise direction

\( Y \) :

Widthwise direction

\( Z \) :

Vertical direction

\( \beta \) :

Temperature coefficient

\( \varepsilon \) :

Emissivity

\( \eta \) :

Electric efficiency

\( \eta_{ref} \) :

Efficiency at reference temperature

\( \Theta \) :

Square wire attack angle

\( \varLambda \) :

Integral length scale

\( \lambda \) :

Taylor microscale

\( \nu \) :

Kinematic viscosity

\( \tau \) :

Temporal distance

\( \tau_{\varLambda } \) :

Integral time scale

\( \tau_{\lambda } \) :

Taylor time scale

References

  1. International Energy Agency: World Energy Outlook 2017 – Executive Summary (2017)

    Google Scholar 

  2. Evans, D.L.: Simplified method for predicting photovoltaic array output. Sol. Energy 27(6), 555–560 (1981)

    Article  Google Scholar 

  3. Baloch, A.A.B., Bahaidarah, H.M.S., Gandhidasan, P., Al-Sulaiman, F.A.: Experimental and numerical performance analysis of a converging channel heat exchanger for PV cooling. Energy Convers. Manag. 103, 14–27 (2015)

    Article  Google Scholar 

  4. Nizetic, S., Coko, D., Yadav, A., Grubisic-Cabo, F.: Water spray cooling technique applied on a photovoltaic panel: The performance response. Energy Convers. Manag. 108, 287–296 (2016)

    Article  Google Scholar 

  5. Bhattacharjee, S., Acharya, S., Potar, A., Meena, A., Bairwa, D.S., Meena, D., Bhagora, M., Meena, P., Gautam, P.K.: An investigational back surface cooling approach with different designs of heat-absorbing pipe for PV/T system. Int. J. Energy Res. 42(5), 1921–1933 (2018)

    Article  Google Scholar 

  6. Rajput, U.J., Yang, J.: Comparison of heat sink and water type PV/T collector for polycrystalline photovoltaic panel cooling. Renew. Energy 116, 479–491 (2018)

    Article  Google Scholar 

  7. Fouladi, F., Henshaw, P., Ting, D.S.-K.: Turbulent flow over a flat plate downstream of a finite height perforated plate. J. Fluids Eng. 137(2), 021203–021212 (2014)

    Article  Google Scholar 

  8. Fouladi, F., Henshaw, P., Ting, D.S.-K.: Effect of a triangular rib on a flat plate boundary layer. J. Fluids Eng. 138(1), 011101–011111 (2015)

    Article  Google Scholar 

  9. Fouladi, F., Henshaw, P., Ting, D.S.-K., Ray, S.: Flat plate convection heat transfer enhancement via a square rib. Int. J. Heat Mass Transf. 104, 1202–1216 (2013)

    Article  Google Scholar 

  10. Wu, H., Ting, D.S.-K., Ray, S.: An experimental study of turbulent flow behind a delta winglet. Exp. Thermal Fluid Sci. 88, 46–54 (2017)

    Article  Google Scholar 

  11. Wu, H., Ting, D.S.-K., Ray, S.: The effect of delta winglet attack angle on the heat transfer performance of a flat surface. Int. J. Heat Mass Transf. 120, 117–126 (2018)

    Article  Google Scholar 

  12. Marumo, E., Suzuki, K., Sato, T.: Turbulent heat transfer in a flat plate boundary layer disturbed by a cylinder. Int. J. Heat Fluid Flow 6(4), 241–248 (1985)

    Article  Google Scholar 

  13. Wang, L., Sundén, B.: Experimental investigation of local heat transfer in a square duct with continuous and truncated ribs. Exp. Heat Transf. 18, 179–197 (2005)

    Article  Google Scholar 

  14. Kamali, R., Binesh, A.R.: The importance of rib shape effects on the local heat transfer and flow friction characteristics of square ducts with ribbed internal surfaces. Int. Commun. Heat Mass Transf. 35, 1032–1040 (2008)

    Article  Google Scholar 

  15. Ali, M., Tariq, A., Gandhi, B.: Flow and heat transfer investigation behind trapezoidal rib using PIV and LCT measurements. Exp. Fluids 54, 1520 (2013)

    Article  Google Scholar 

  16. Liu, J., Hussain, S., Wang, J., Wang, L., Xie, G., Sundén, B.: Heat transfer enhancement and turbulent flow in a high aspect ratio channel (4:1) with ribs of various truncation types and arrangements. Int. J. Therm. Sci. 123, 99–116 (2018)

    Article  Google Scholar 

  17. Ravi, B.V., Singh, P., Ekkad, S.V.: Numerical investigation of turbulent flow and heat transfer in two-pass ribbed channels. Int. J. Therm. Sci. 112, 31–43 (2017)

    Article  Google Scholar 

  18. Thermal Conductivity of common Materials and Gases. https://www.engineeringtoolbox.com/thermal-conductivity-d_429.html. Accessed 15 June 2018

  19. Emissivity Coefficients Materials. https://www.engineeringtoolbox.com/emissivity-coefficients-d_447.html. Accessed 15 June 2018

  20. Radiation Heat Transfer. https://www.engineeringtoolbox.com/radiation-heat-transfer-d_431.html. Accessed 15 June 2018

  21. Fouladi, F., Henshaw, P., Ting, D.S.-K.: Enhancing smart grid realization with accurate prediction of photovoltaic performance based on weather forecast. Int. J. Environ. Stud. 70(5), 754–764 (2013)

    Article  Google Scholar 

  22. Ting, D.S.-K.: Basics of Engineering Turbulence. Academic Press, New York (2016)

    Google Scholar 

  23. Taylor, G.I.: The spectrum of turbulence. Proc. R. Soc. Lond. 164(919), 476–490 (1938)

    MATH  Google Scholar 

  24. Figliola, R.S., Beasley, D.E.: Theory and Design for Mechanical Measurements, 4th edn. Wiley, New York (2006)

    Google Scholar 

  25. Yavuzkurt, S.: A guide to uncertainty analysis of hot-wire data. J. Fluids Eng. 106, 181–186 (1984)

    Article  Google Scholar 

  26. Tyagi, H., Liu, R., Ting, D.S.-K., Johnston, C.R.: Measurement of wake properties of a sphere in freestream turbulence. Exp. Thermal Fluid Sci. 30, 587–604 (2006)

    Article  Google Scholar 

  27. Dutta, S., Panigrahi, P.K., Muralidhar, K.: Experimental investigation of flow past a square cylinder at an angle of incidence. J. Eng. Mech. 134(9), 788–803 (2008)

    Article  Google Scholar 

  28. Dayem, A.M.A., Bayomi, N.N.: Experimental and numerical flow visualization of a single square cylinder. Int. J. Comput. Methods Eng. Sci. Mech. 7, 113–127 (2006)

    Article  Google Scholar 

  29. Okajima, A.: Strouhal numbers of rectangular cylinders. J. Fluid Mech. 123, 379–398 (1982)

    Article  Google Scholar 

  30. Hwang, R.R., Yao, C.-C.: A numerical study of vortex shedding from a square cylinder with ground effect. J. Fluids Eng. 119(3), 512–518 (1997)

    Article  Google Scholar 

  31. Bayraktar, S., Yayla, S., Oztekin, A., Ma, H.: Wall proximity effects on flow over cylinders with different cross sections. Can. J. Phys. 92, 1141–1148 (2014)

    Article  Google Scholar 

  32. Tariq, A., Panigrahi, P.K., Muralidhar, K.: Flow and heat transfer in the wake of a surface-mounted rib with a slit. Exp. Fluids 37(5), 701–719 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was made possible by Natural Sciences and Engineering Research Council of Canada and Ontario Centres of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Y., Ahmed, A., Ting, D.SK., Ray, S. (2019). The Influence of Square Wire Attack Angle on the Heat Convection from a Surrogate PV Panel. In: Vasel, A., Ting, DK. (eds) The Energy Mix for Sustaining Our Future. EAS 2018 2018. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-00105-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00105-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00104-9

  • Online ISBN: 978-3-030-00105-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics