Skip to main content

Universal Darwinism and the Origins of Order

  • Conference paper
  • First Online:
Book cover Evolution, Development and Complexity

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

In this chapter we describe the ‘universal Darwinism’ framework which proposes the following. The observable universe results from two types of processes: (1) disorder’s tendency to increase in isolated systems (the second law of thermodynamics) and (2) Darwinian selection, which produces orderly entities that can withstand the second law. Darwinian processes generate complex order not just in the biological domain but in all five domains of nature. These domains exist in a nested hierarchy as follows (in order of decreasing fundamentalness): cosmological, quantum, biological, neural, and cultural. Each qualifies as a distinct domain, because each is characterized by a distinct ‘knowledge repository’, that is, a cumulative store of information about existence requirements in that domain (e.g. in the biological domain, a genome). Knowledge repositories are probabilistic models which make guesses about how to exist, guesses which are then tested for accuracy by the ‘embodied adapted system’ (e.g. phenotype) encoded by the knowledge repository. The repository then undergoes a Bayesian update based on test results and thus becomes less ignorant and less entropic. These natural inferential systems evolve according to ‘variance–inheritance–selection’ Darwinian dynamics, with wiser knowledge repositories leaving more copies behind. Each new domain’s knowledge repository computationally transforms the substrate of the earlier domain (e.g. cultural repositories orchestrate the neural substrate) to generate innovative ways of overcoming the second law in the new domain. We conclude that Darwinian theory, as an explanation for the origins of complex order in the universe, may be far more fundamental than is conventionally supposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, following Jaynes (1965), we consider the second law of thermodynamics to apply to both equilibrium and non-equilibrium systems. This view has been most clearly demonstrated by the fluctuation theorem and its experimental support.

References

  • Allaby, R. G. et al. (2017). Geographic mosaics and changing rates of cereal domestication. The Royal Society.

    Book  Google Scholar 

  • Arvey R. & Colarelli S. M. (Eds). (2015). Biological foundations of organizational behavior. University of Chicago Press.

    Google Scholar 

  • Bastos A. M. et al. (2012). Canonical microcircuits for predictive coding. Neuron, Vol. 76(4).

    Google Scholar 

  • Bishop, E. (1967). Foundations of Constructive Analysis. New York: Academic Press. ISBN 4-87187-714-0.

    MATH  Google Scholar 

  • Brenner, S. (1999). Theoretical biology in the third millennium. Philosophical Transactions of the Royal Society.

    Book  Google Scholar 

  • Brydon, E. (2012). In massive genome analysis ENCODE data suggests ‘gene’ redefinition. Cold Spring Harbor Laboratory. Downloaded 2nd Dec. 2013 from http://www.cshl.edu/Article-Gingeras/massive-genome-analysis-by-encode-redefines-the-gene-and-sheds-new-light-on-complex-disease

  • Buss, D. M., Haselton, M. G., Shackelford, T. K., Bleske, A. L., & Wakefield, J. C. (1998). Adaptations, exaptations, and spandrels. American Psychologist, 53(5), 533.

    Article  Google Scholar 

  • Cain N. et al. (2016). The Computational Properties of a Simplified Cortical Column Model. PLOS computational biology, Vol. 12(9).

    Google Scholar 

  • Campbell, D. T. (1974). Evolutionary epistemology. In P.A. Schilpp (Ed.), The Philosophy of Karl R. Popper. The Library of Living Philosophers. Lasalle, IL: Open Court Publishing Company, Volume 14-1, 413–463.

    Google Scholar 

  • Campbell, J. O. (2010). Quantum Darwinism as a Darwinian process. arXiv preprint.

    Google Scholar 

  • Campbell, J. O. (2015). Darwin does physics. s.l.: CreateSpace.

    Google Scholar 

  • Campbell, J. O. (2016). Universal Darwinism as a process of Bayesian inference. Front. Syst. Neurosci. doi: https://doi.org/10.3389/fnsys.2016.00049

  • Comte, A. (1848). A General View of Positivism. Translation by Bridges, J. H. (1865), Trübner and Co.; reissued by Cambridge University Press (2009; ISBN 978-1-108-00064-2).

    Google Scholar 

  • Crane, L. (1994/2010). Possible implications of the quantum theory of gravity: an introduction to the meduso-anthropic principle. arXiv:hep-th/9402104v1. Reprinted in Crane, L. (2010). Possible implications of the quantum theory of gravity: an introduction to the meduso-anthropic principle. Foundations of Science, vol. 15, pp. 369–373.

    Google Scholar 

  • Dalvit, D. A. R., Dziarmaga, J. & Zurek, W. H. (2005). Predictability sieve, pointer states, and the classicality of quantum trajectories. Phys. Rev. A, Vol. 72, 062101.

    Article  ADS  Google Scholar 

  • Darwin, C. R. (1859). On the Origin of Species. London: John Murray.

    Google Scholar 

  • Davies, P. C. W. & Walker, S. I. (2012). The Algorithmic Origins of Life. Journal of the Royal Society, Vol. 10.

    Google Scholar 

  • Dawkins, R. (1982). The Extended Phenotype: The Long Reach of the Gene. Oxford University Press.

    Google Scholar 

  • De Jong, K. A. (2006). Evolutionary computation: a unified approach. Cambridge MA: MIT Press.

    MATH  Google Scholar 

  • Dennett, D. (1995). Darwin’s Dangerous Idea. New York: Schuster.

    Google Scholar 

  • Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London, Vol. A 400 pg. 97–117.

    Google Scholar 

  • Deutsch, D. (1997). The Fabric of Reality. London: Penguin.

    Google Scholar 

  • Deustch, D. (2011). The Beginning of Infinity. London: Penguin.

    Google Scholar 

  • Dirac, P.A.M. (1958). Quantum Mechanics. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Fernando, C, Szathmary, E & Husbands, P. (2012). Selectionist and evolutionary approaches to brain function: a critical appraisal. Computational Neuroscience.

    Google Scholar 

  • Fischetti, M. (2011). Computers versus Brains. Scientific American. November 1, 2011.

    Google Scholar 

  • Frank, R. H. (2012a). The Darwin economy: Liberty, competition, and the common good. Princeton University Press.

    Google Scholar 

  • Frank, S. A. (2012b). Natural selection. V. How to read the fundamental equations of evolutionary change in terms of information theory. Journal of Evolutionary Biology, Vols. 25: 2377–2396.

    Article  Google Scholar 

  • Friston, K. J. (2013). Life as we know it. Journal of the Royal Society Interface, Vol. 10: 20130475.

    Article  Google Scholar 

  • Friston K. J. et al. (2017). Active Inference: A process theory. Neural Computation, Vol. 29(1).

    Google Scholar 

  • Gardner, A. & Conlon, J. P. (2013). Cosmological natural selection and the purpose of the universe. Complexity 18: 48–56.

    Article  ADS  MathSciNet  Google Scholar 

  • Gardner, J. N. (2000). The selfish biocosm. Complexity 5: 34–45.

    Article  MathSciNet  Google Scholar 

  • Gavrilov, Z. (2012). Quantum computation. MIT. Downloaded 5th Dec. 2017 from http://web.mit.edu/zoya/www/quantComp.pdf

  • Gibson M. A. & Lawson, D. W. (Eds). (2014). Applied evolutionary anthropology: Darwinian approaches to contemporary world issues. Springer.

    Google Scholar 

  • Gillespie, D. T. A. (1970). Quantum Mechanical Primer. Scranton: International Textbook Company.

    Google Scholar 

  • Gould, S. J. & Vrba, E. S. (1982). Exaptation – a missing term in the science of form. Paleobiology 8 (1): 4–15.

    Article  Google Scholar 

  • Hamilton, W. (1964). The genetical evolution of social behaviour I. Journal of Theoretical Biology, vol. 7, no. 1, pp. 1–16.

    Article  MathSciNet  Google Scholar 

  • Hardy, L. (2013). Are quantum states real? International Journal of Modern Physics B.

    Google Scholar 

  • Harrison, E. R. (1995). The natural selection of universes containing intelligent life. Quarterly Journal of the Royal Astronomical Society 36: 193–203.

    ADS  Google Scholar 

  • Heylighen F. (1999): "The Growth of Structural and Functional Complexity during Evolution", in: F. Heylighen, J. Bollen & A. Riegler (eds.) The Evolution of Complexity (Kluwer Academic, Dordrecht), p. 17–44.

    MATH  Google Scholar 

  • Hoehn, P. A. (2017a). Quantum theory from questions. Phys. Rev., Vol. A 95, 012102.

    Article  ADS  MathSciNet  Google Scholar 

  • Hoehn, P. A. (2017b). Quantum theory from rules on information acquisition. Entropy, Vol. 19(3), 98.

    Article  ADS  Google Scholar 

  • Ignatova, Z., Marinez-Perez, I. & Zimmermann, K. (2008). DNA Computing Models. Springer. ISBN 978-0-387-73635-8.

    Google Scholar 

  • Jaynes, E. T. (1957). Information Theory and Statistical Mechanics I., Phys. Rev., 106, 620.

    Article  ADS  MathSciNet  Google Scholar 

  • Jaynes, E. T. (1965). Gibbs vs Boltzmann Entropies. Am. J. Phys., 391.

    Google Scholar 

  • Jaynes, E. T. (2003). Probability Theory: The Logic of Science. University of Cambridge Press.

    Google Scholar 

  • Landauer, R. (1996). The physical nature of information. Physics Letters A, Vol. 217. https://doi.org/10.1016/0375-9601(96)00453-7

  • Lee, T. S. (2015). The visual system’s internal model of the world. Proceedings of the IEEE. Institute of Electrical and Electronics Engineers, Vols. 103(8), 1359–1378.

    Article  Google Scholar 

  • Li, X. & Lui, D. (2004). DNA-Templated Organic Synthesis: Nature’s Strategy for Controlling Chemical Reactivity Applied to Synthetic Molecules. Angew. Chem. Int. Ed., Vol. 43, 4848.

    Article  Google Scholar 

  • Lloyd, S. (2007). Programming the Universe. Vintage; Reprint edition.

    Google Scholar 

  • Lloyd, S. (2013). The Universe as Quantum Computer. Arxiv preprint.

    Google Scholar 

  • Maldacena, J. M. (1998). The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys, Vol. 2, pp. 231–252.

    Article  ADS  MathSciNet  Google Scholar 

  • Markopulou, F. (2012). The computing spacetime. [ed.] S. B. Cooper, et al. How the world computes. Berlin, Hei: Springer.

    Google Scholar 

  • McGregor, S. (2012). Evolution of Associative Learning in Chemical Networks. Comput Biol 8(11). doi:https://doi.org/10.1371/journal.pcbi.1002739

  • Nelson, R. R. & Winter, S. G. (1982). An evolutionary theory of economic change. Harvard University Press. ISBN 0-674-27228-5.

    Google Scholar 

  • O’Brien, M. J. & Lyman R. L. (2003). Resolving Phylogeny: Evolutionary Archaeology’s Fundamental Issue. [book auth.] T. L. VanPool and C. S. VanPool. Essential Tensions in Archaeological Method and Theory. Salt Lake City: University of Utah Press, pp. 115-135.

    Google Scholar 

  • Orr, H. A. (2000). Adaptation and the cost of complexity. Evolution, 54(1), 13–20.

    Article  Google Scholar 

  • Orus, R. (2014). A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States. Annals of Physics 349, 117–158.

    Article  ADS  MathSciNet  Google Scholar 

  • Pietraszewski, D. Curry, O.S., Petersen, M.B., Cosmides, L. & Tooby, J. (2015). Constituents of political cognition: Race, party politics, and the alliance detection system. Cognition, 140. 24–39.

    Article  Google Scholar 

  • Pinker, S. & Bloom, P. (1992). Natural language and natural selection. In The Adapted Mind: Evolutionary Psychology and the Generation of Culture, J. Barkow, L. Cosmides, and J. Tooby, Eds. pp. 451–493. Oxford University Press.

    Google Scholar 

  • Popper, K. (1972). Objective Knowledge. Clarendon Press.

    Google Scholar 

  • Price, M. E. (2017). Entropy and selection: Life as an adaptation for universe replication. Complexity, vol. 2017, Article ID 4745379, 4 pages, 2017. doi:https://doi.org/10.1155/2017/4745379

  • Pusey M F, Barrett J & Randolph T. (2012). On the reality of quantum states. Nature Physics 8, pp. 475–478.

    Article  ADS  Google Scholar 

  • Ramstead M. J. D., Badcock P. B., & Friston K. J. (2017). Answering Schrödinger’s question: A free-energy formulation. Phys Life Rev.

    Google Scholar 

  • Richerson, P. J. & Boyd, R. (2005). Not by genes alone: How culture transformed human evolution. University of Chicago Press.

    Google Scholar 

  • Rovelli, C. (1996). Relational Quantum Mechanics. International Journal of Theoretical Physics, Vols. 35, pp. 1637–78.

    Article  ADS  MathSciNet  Google Scholar 

  • Saad G. (Ed). (2011). Evolutionary Psychology in the Business Sciences. Berlin: Springer.

    Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communications. Bell System Technical Journal 27(3): 379–423.

    Article  MathSciNet  Google Scholar 

  • Smart, J. M. (2009). Evo devo universe? A framework for speculations on cosmic culture. In Cosmos and Culture: Cultural Evolution in a Cosmic Context, S. J. Dick and M. L. Lupisella, Eds., pp. 201–295, Government Printing Office, NASA SP-2009-4802, Washington, DC.

    Google Scholar 

  • Smolin, L. (1992). Did the universe evolve? Classical and Quantum Gravity, vol. 9, no. 1, pp. 173–191.

    Article  ADS  MathSciNet  Google Scholar 

  • Smolin, L. (1997). The Life of the Cosmos. New York: Oxford University Press.

    MATH  Google Scholar 

  • Smolin, L. (2007). The status of cosmological natural selection. Arxiv preprint.

    Google Scholar 

  • Spencer-Brown, G. (1979). The Laws of Form. New York: E. P. Dutton.

    Google Scholar 

  • Stephens, C. R., ‘t Hooft, G. and Whiting, B. F. (1993). Black hole evaporation without information loss. Classical and quantum gravity Volume 11, Number 3.

    Google Scholar 

  • Swingle, B. & Van Raamsdonk, M. (2014). Universality of Gravity from Entanglement. ArXiv preprint.

    Google Scholar 

  • ‘t Hooft, G. (2016). The cellular automaton interpretation of quantum mechanics. Springer.

    Google Scholar 

  • Thayer, B. A. (2004). Darwin and international relations: On the evolutionary origins of war and ethnic conflict. University Press of Kentucky.

    Google Scholar 

  • Tinbergen, N. (1965). Animal behaviour. Time Inc.

    Google Scholar 

  • Tomer R. et al. (2010). Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell, Vol. 142 (5): 800–809.

    Article  Google Scholar 

  • Tooby J. & Cosmides L. (1992). The psychological foundations of culture. In The Adapted Mind: Evolutionary Psychology and the Generation of Culture, J. Barkow, L. Cosmides, and J. Tooby, Eds. Oxford University Press.

    Google Scholar 

  • Verlinde, E. (2010). On the Origin of Gravity and the Laws of Newton., arXiv:1001.0785.

    Google Scholar 

  • Vidal, C. (2014). The Beginning and the End: The Meaning of Life in a Cosmological Perspective. Springer.

    Google Scholar 

  • Wigner, E. P. (1960). "The unreasonable effectiveness of mathematics in the natural sciences. Richard Courant lecture in mathematical sciences delivered at New York University, May 11, 1959". Communications on Pure and Applied Mathematics 13: 1–14.

    Article  ADS  Google Scholar 

  • Williams, G. C. (1966). Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought. Princeton University Press.

    Google Scholar 

  • Zurek, W. H. (1998). Decoherence, Einselection and the Existential Interpretation. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, pp. 1793–1821.

    Google Scholar 

  • Zurek, W. H. (2007). Relative States and the Environment: Einselection, Envariance, Quantum Darwinism, and the Existential Interpretation. arXiv:0707.2832v1.

    Google Scholar 

  • Zurek, W. H. (2009). Quantum Darwinism. Nature Physics, vol. 5, pp. 181–188.

    Article  ADS  Google Scholar 

  • Zurek, W. H. (2014). Quantum Darwinism, classical reality and the randomness of quantum jumps. Physics Today, Vols. 67, 10, 44.

    Google Scholar 

  • Zurek, W. H. & Zwolak, M. (2013). Complementarity of quantum discord and classically accessible information. Scientific Reports 3, Article number: 1729. doi:https://doi.org/10.1038/srep01729

  • Zylberberg, A., et al. (2011). The human Turing machine: a neural framework for mental programs. Trends Cogn Sci 15: 293–300.

    Google Scholar 

Download references

Acknowledgements

We would like to thank Karl Friston for a number of comments and suggestions which have been incorporated into this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Campbell, J.O., Price, M.E. (2019). Universal Darwinism and the Origins of Order. In: Georgiev, G., Smart, J., Flores Martinez, C., Price, M. (eds) Evolution, Development and Complexity. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-00075-2_10

Download citation

Publish with us

Policies and ethics