Skip to main content

Analytical Electron Microscopy

  • Chapter
  • First Online:

Part of the book series: Springer Handbooks ((SHB))

Abstract

Analytical electron microscopy ( ) refers to a collection of spectroscopic techniques that are capable of providing structural, compositional, and bonding information about samples probed by an electron beam, typically inside a transmission electron microscope ( ). Several AEM techniques are covered with particular attention given to the (energy-dispersive x-ray spectroscopy) microanalysis and (electron energy-loss spectroscopy) techniques. First, the different AEM techniques available in TEMs are surveyed and a parallel between EELS and EDXS is drawn. A fundamental description of the elastic and inelastic scattering events responsible for these signals is presented. The practical challenges related to electron optics and instrumentation capabilities are then discussed. Technical advances that have affected the performance of these AEM techniques are outlined, including successive generations and technologies of energy filters, monochromators, aberration correctors, and advanced energy-dispersive x-ray spectrometers. The different approaches of spectroscopic imaging with x-rays and energy-loss spectroscopy, the resolution limits, and the effects of electron-beam propagation are also described along with the types of information that can be extracted with electron-energy-loss near-edge structures. After a review of dielectric theory and low-loss spectroscopy, examples of plasmonic imaging are presented. The review also draws attention to the many efforts to extend the limits of spatial resolution and the atomic-level chemical analyses of materials. Some important progress in the statistical analysis of signals and associated numerical methods is mentioned. The review also presents some novel developments in image capture, such as the pixelated detectors. Finally, the realm of phonon spectroscopy made possible through the latest instrumentation is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   279.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   359.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • D.C. Joy, A.D.J. Romig, J.I. Goldstein: Principles of Analytical Electron Microscopy (Plenum, New York 1986)

    Google Scholar 

  • D.B. Williams, C.B. Carter: Transmission Electron Microscopy. A Textbook for Materials Science, 2nd edn. (Springer, New York 2009)

    Google Scholar 

  • D.B. Williams, C.B. Carter: Transmission Electron Microscopy. Diffraction, Imaging, and Spectrometry (Springer International Publishing, Cham 2016)

    Google Scholar 

  • W. Sigle: Analytical transmission electron microscopy, Annu. Rev. Mater. Res. 35, 239–314 (2005)

    CAS  Google Scholar 

  • R.F. Egerton: Electron energy loss spectroscopy in the TEM, Rep. Prog. Phys. 72, 016502 (2009)

    Google Scholar 

  • C. Colliex: New trends in STEM-based nano-EELS analysis, J. Electron Microsc. 45, 44 (1996)

    CAS  Google Scholar 

  • L. Reimer: Transmission Electron Microscopy (Springer, Heidelberg 1984)

    Google Scholar 

  • L. Solymar, D. Walsh: Lectures on the Electronic Properties of Materials, 7th edn. (Oxford Univ. Press, Oxford 2004)

    Google Scholar 

  • R.F. Egerton: Physical Principles of Electron Microscopy (Plenum, New York 2005)

    Google Scholar 

  • M.J. Fransen, T.L. van Rooy, P. Kruit: Field emission energy distributions from individual multiwalled carbon nanotubes, Appl. Surf. Sci. 146, 312 (2005)

    Google Scholar 

  • F. Houdellier, L. de Knoop, C. Gatel, A. Masseboeuf, S. Mamishin, Y. Taniguchi, M. Delmas, M. Monthioux, M.J. Hÿtch, E. Snoeck: Development of TEM and SEM high brightness electron guns using cold-field emission, Ultramicroscopy 151, 107–115 (2015)

    CAS  Google Scholar 

  • J.C.H. Spence, J.M. Zuo: Electron Microdiffraction (Plenum, New York 1992)

    Google Scholar 

  • N. Dellby, O.L. Krivanek, P.D. Nellist, P.E. Batson, A.R. Lupini: Progress in aberration-corrected scanning transmission electron microscopy, J. Electron Microsc. 50, 177 (2001)

    CAS  Google Scholar 

  • W.C.T. Dowell, P. Goodman: Image formation and contrast from the convergent electron beam, Philos. Mag. 28, 471 (1973)

    Google Scholar 

  • P. Nellist, S.J. Pennycook: Subangstrom resolution by underfocused incoherent transmission electron microscopy, Phys. Rev. Lett. 81, 4156 (1998)

    CAS  Google Scholar 

  • C. Mory, C. Colliex, J. Cowley: Optimum defocus for STEM imaging and microanalysis, Ultramicroscopy 21, 171 (1987)

    Google Scholar 

  • O.L. Krivanek, N. Dellby, A.K. Spence, R.A. Camps, L.M. Brown: Aberration correction in the STEM. In: Electron Microscopy and Microanalysis, Institute of Physics, Conference Series, Vol. 153 (IOP Publishing, London 1997) pp. 35–40

    Google Scholar 

  • U. Gross, F.J.M. Mescher, J.C. Tiemeijer: The microprocessor-controlled CM12/STEM scanning-transmission electron microscope, Philips Tech. Rev. 43(10), 273 (1987)

    CAS  Google Scholar 

  • J.M. Cowley: Image contrast in a transmission scanning electron microscope, Appl. Phys. Lett. 15(2), 58–59 (1969)

    Google Scholar 

  • M. Zeitler, M.G.R. Thomson: Scanning transmission electron microscopy, Optik 31(3), 258 (1970)

    Google Scholar 

  • C.J. Humphreys: Principles of STEM. In: Introduction to Analytical Electron Microscopy, ed. by D.C. Joy, A.D.J. Romig, J.I. Goldstein (Plenum, New York 1979)

    Google Scholar 

  • J. Cowley: Principles of image formation. In: Principles of Analytical Electron Microscopy, ed. by D.C. Joy, A.D. Romig Jr., J.I. Goldstein (Plenum, New York 1986) pp. 77–122

    Google Scholar 

  • N.W.M. Ritchie, D.E. Newbury, J.M. Davis: EDS measurements of x-ray intensity at WDS precision and accuracy using a silicon drift detector, Microsc. Microanal. 18, 892–904 (2012)

    CAS  Google Scholar 

  • P. Lechner, S. Eckbauer, R. Hartmann, S. Krisch, D. Hauff, R. Richter, H. Soltau, L. Struder, C. Fiorini, E. Gatti, E. Longoni, M. Sampietro: Silicon drift detectors for high-resolution room temperature x-ray spectroscopy, Nucl. Instr. Methods Phys. Res. A 377, 346–351 (1996)

    CAS  Google Scholar 

  • H. Strüder, L. Soltau: High resolution silicon detectors for photons and particles, Radiat. Prot. Dosim. 61, 39–46 (1995)

    Google Scholar 

  • D.E. Newbury, N.W.M. Ritchie: Quantitative electron-excited x-ray microanalysis of borides, carbides, nitrides, oxides, and fluorides with scanning electron microscopy/silicon drift detector energy-dispersive spectrometry (SEM/SDD-EDS) and NIST DTSA-II, Microsc. Microanal. 21(05), 1327–1340 (2015)

    CAS  Google Scholar 

  • D.E. Newbury, N.W.M. Ritchie: Elemental mapping of microstructures by scanning electron microscopy-energy dispersive x-ray spectrometry (SEM-EDS): Extraordinary advances with the silicon drift detector (SDD), J. Anal. At. Spectrom. 28(7), 973–988 (2013)

    CAS  Google Scholar 

  • G. L' Espérance, G.A. Botton, M. Caron: Detection and quantification problems in the analysis of light elements with UTW detectors. In: Proc. Microbeam Anal. Soc, ed. by P. Ingram (San Francisco, San Francisco 1990) p. 284

    Google Scholar 

  • J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C.E. Lyman, E. Lifshin, L. Sawyer, J.R. Michael: Scanning Electron Microscopy and X-Ray Microanalysis (Kluwer Academic, New York 2003)

    Google Scholar 

  • M.T. Otten: Transmission Electron Microscopes in Materials Research, The CM Series (Philips Electron Optics, Eindhoven 1996)

    Google Scholar 

  • C.S. Yeoh, D. Rossouw, Z. Saghi, P. Burdet, R.K. Leary, P.A. Midgley: The dark side of EDX tomography: Modeling detector shadowing to aid 3-D elemental signal analysis, Microsc. Microanal. 21(03), 759–764 (2015)

    CAS  Google Scholar 

  • W.A.P. Nicholson, C.C. Gray, J.N. Chapman, B.W. Robertson: Optimizing thin film x-ray spectra for quantitative analysis, J. Microsc. 125, 25 (1982)

    CAS  Google Scholar 

  • N.J. Zaluzec: Analytical formulae for calculation of x-ray detector solid angles in the scanning and scanning/transmission analytical electron microscope, Microsc. Microanal. 20(04), 1318–1326 (2014)

    CAS  Google Scholar 

  • W. Xu, J.H. Dycus, X. Sang, J.M. Le Beau: A numerical model for multiple detector energy dispersive x-ray spectroscopy in the transmission electron microscope, Ultramicroscopy 164, 51–61 (2016)

    CAS  Google Scholar 

  • R.F. Egerton: Electron Energy Loss Spectroscopy in the Electron Microscope, 2nd edn. (Plenum, New York 1996)

    Google Scholar 

  • R. Castaing, L. Henry: Filtrage magnetique des vitesses en microscopie electronique, C.R. Acad. Sci. Paris B 255, 76 (1962)

    Google Scholar 

  • J. Mayer, C. Deininger, L. Reimer: Electron spectroscopic diffraction. In: Energy Filtering Transmission Electron Microscopy, ed. by L. Reimer (Springer, Heidelberg 1995) pp. 291–345

    Google Scholar 

  • O.L. Krivanek, C.C. Ahn, R.B. Keeney: Parallel detection electron spectrometer using quadrupole lenses, Ultramicroscopy 22, 103 (1987)

    CAS  Google Scholar 

  • A. Gubbens, M. Barfels, C. Trevor, R. Twesten, P. Mooney, P. Thomas, B. McGinn: The GIF Quantum, a next generation post-column imaging energy filter, Ultramicroscopy 110(8), 962–970 (2010)

    CAS  Google Scholar 

  • M. Saunders: Quantitative zone-axis convergent beam electron diffraction: Current status and future prospects, Microsc. Microanal. 9, 411 (2003)

    CAS  Google Scholar 

  • H. Rose, D. Krahl: Electron optics of imaging filters. In: Energy Filtering Electron Microscopy, ed. by L. Reimer (Springer, Heidelberg 1995) p. 43

    Google Scholar 

  • O.L. Krivanek, A.J. Gubbens, N. Dellby: Developments in EELS instrumentation for spectroscopy and imaging, Microsc. Microanal. Microstruct. 2, 315–332 (1991)

    CAS  Google Scholar 

  • O.L. Krivanek, S.L. Friedman, A.J. Gubbens, B. Kraus: An imaging filter for biological applications, Ultramicroscopy 59, 267 (1995)

    CAS  Google Scholar 

  • M. Terauchi, M. Tanaka, K. Tsuno, M. Ishida: Development of a high energy resolution electron energy-loss spectroscopy microscope, J. Microsc. 194, 203 (1999)

    CAS  Google Scholar 

  • R.F. Egerton: New techniques in electron energy-loss spectroscopy and energy-filtered imaging, Micron 34, 127 (2003)

    CAS  Google Scholar 

  • S. Lazar, G.A. Botton, M.-Y. Wu, F.D. Tichelaar, H.W. Zandbergen: Materials science applications of HREELS in near edge structure analysis and low-energy loss spectroscopy, Ultramicroscopy 96, 535 (2003)

    CAS  Google Scholar 

  • C. Mitterbauer, G. Kothleithner, F. Hofer, H. Zandbergen: Electron energy-loss near-edge structures of 3d transition metal oxides recorded at high energy resolution, Ultramicroscopy 96, 469 (2003)

    CAS  Google Scholar 

  • M.M.G. Barfels, P. Burgner, R. Edwards, H.A. Brink: A new high stability, 4th order aberration corrected spectrometer and imaging filter for a monochromated TEM, Microsc. Microanal. 8(Suppl. 2), 614CD (2002)

    Google Scholar 

  • P.C. Tiemeijer, J.H.A. van Lin, A.F. de Jong: First results of a monochromatized 200 kV TEM, Microsc. Microanal. 7(suppl. 2), 1130 (2001)

    Google Scholar 

  • M. Tanaka, M. Terauchi, K. Tsuda, K. Saitoh, M. Mukai, T. Kaneyama, T. Tomita, K. Tsuno, M. Kersker, M. Naruse, T. Honda: Development of an 0.2 eV energy resolution analytical electron microscope, Microsc. Microanal. 8(Suppl. 2), 68 (2002)

    Google Scholar 

  • S. Uhlemann, M. Haider: Experimental set-up of a purely electrostatic monochromator for high resolution and analytical purposes of a 200 kV TEM, Microsc. Microanal. 8(suppl. 2), 584 (2002)

    Google Scholar 

  • O.L. Krivanek, J.P. Ursin, N.J. Bacon, G.J. Corbin, N. Dellby, P. Hrncirik, Z.S. Szilagyi: High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy, Philos. Trans. Royal Soc. A 367(1903), 3683–3697 (2009)

    Google Scholar 

  • O.L. Krivanek, T.C. Lovejoy, G.J. Corbin, N. Dellby, M.F. Murfitt, N. Kurz, R.W. Carpenter: Monochromated STEM with high energy and spatial resolutions, Microsc. Microanal. 18(S2), 330–331 (2012)

    Google Scholar 

  • P. Rez, T. Aoki, K. March, D. Gur, O.L. Krivanek, N. Dellby, T.C. Lovejoy, A.G. Wolf, H. Cohen: Damage-free vibrational spectroscopy of biological materials in the electron microscope, Nat. Commun. 7, 10945 (2016)

    CAS  Google Scholar 

  • M. Tencé, H. Pinna, T. Birou, L. Guiraud, A. Mayet, C. Pertel, V.C. Serin, C. Colliex: A new detector device designed for quantitative EELS spectroscopy. In: Proc. 16th Int. Microsc. Congr., Sapporo, Japan, 3–8 September 2006, ed. by H. Ichinose, T. Sasaki (2006) p. 824

    Google Scholar 

  • J.L. Hart, A.C. Lang, C. Trevor, R. Twesten, M.L. Taheri: Performance of a direct electron detector for the application of electron energy-loss spectroscopy, Microsc. Microanal. 22(S3), 336–337 (2016)

    Google Scholar 

  • S.L. Chang, C. Dwyer, J. Barthel, C.B. Boothroyd, R.E. Dunin-Borkowski: Performance of a direct detection camera for off-axis electron holography, Ultramicroscopy 161, 90–97 (2016)

    CAS  Google Scholar 

  • M. Varela, S.D. Findlay, A.R. Lupini, H.M. Christen, A.Y. Borisevich, N. Dellby, O.L. Krivanek, P.D. Nellist, M.P. Oxley, L.J. Allen, S.J. Pennycook: Spectroscopic imaging of single atoms within a bulk solid, Phys. Rev. Lett. 92, 095502 (2004)

    CAS  Google Scholar 

  • I. Arslan, A. Bleloch, E.A. Stach, N.D. Browning: Atomic and electronic structure of mixed and partial dislocations in GaN, Phys. Rev. Lett. 94, 025504 (2005)

    Google Scholar 

  • K. Kimoto, T. Asaka, T. Nagai, M. Saito, Y. Matsui, K. Ishizuka: Element-selective imaging of atomic columns in a crystal using STEM and EELS, Nature 450, 702–704 (2007)

    CAS  Google Scholar 

  • D.A. Muller, L.F. Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby, O.L. Krivanek: Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy, Science 319(5866), 1073–1076 (2008)

    CAS  Google Scholar 

  • G.A. Botton, S. Lazar, C. Dwyer: Elemental mapping at the atomic scale using low accelerating voltages, Ultramicroscopy 110, 926–934 (2010)

    CAS  Google Scholar 

  • S. Lazar, Y. Shao, L. Gunawan, R. Nechache, A. Pignolet, G.A. Botton: Imaging, core-loss, and low-loss electron-energy-loss spectroscopy mapping in aberration-corrected STEM, Microsc. Microanal. 16, 416–424 (2010)

    CAS  Google Scholar 

  • M. Watanabe, D.B. Williams: Current state of x-ray mapping/spectrum-imaging in conventional and Cs-corrected analytical scanning transmission electron microscopes. Towards atomic-scale resolution, Scanning 27, 94 (2005)

    Google Scholar 

  • M. Watanabe, D.W. Ackland, A. Burrows, C.J. Kiely, D.B. Williams, M. Kanno, R. Hynes: Advantages of Cs-correctors for spectrometry in STEM, Microsc. Microanal. 11(Suppl. 2), 2132 (2005)

    Google Scholar 

  • M.W. Chu, S.C. Liou, C.P. Chang, F.S. Choa, C.H. Chen: Emergent chemical mapping at atomic-column resolution by energy-dispersive x-ray spectroscopy in an aberration-corrected electron microscope, Phys. Rev. Lett. 104(19), 196101 (2010)

    Google Scholar 

  • G. Kothleitner, M.J. Neish, N.R. Lugg, S.D. Findlay, W. Grogger, F. Hofer, L.J. Allen: Quantitative elemental mapping at atomic resolution using x-ray spectroscopy, Phys. Rev. Lett. 112, 085501 (2014)

    Google Scholar 

  • R.F. Egerton: Vibrational-loss EELS and the avoidance of radiation damage, Ultramicroscopy 159, 95–100 (2015)

    CAS  Google Scholar 

  • L. Reimer: Introduction. In: Energy Filtering Transmission Electron Microscopy, ed. by L. Reimer (Springer, Heidelberg 1995) p. 1

    Google Scholar 

  • C. Dwyer, J. Etheridge: Scattering of Å-scale electron probes in silicon, Ultramicroscopy 96, 343 (2003)

    CAS  Google Scholar 

  • P. Voyles, D.A. Muller: Depth-dependent imaging of individual dopant atoms in silicon, Microsc. Microanal. 10, 291 (2004)

    CAS  Google Scholar 

  • G. Möbus, S. Nufer: Nanobeam propagation and imaging in a FEGTEM/STEM, Ultramicroscopy 96, 285 (2003)

    Google Scholar 

  • C. Colliex, C. Mory: Quantitative aspects of scanning transmission electron miscroscopy. In: Quantitative Electron Microscopy, ed. by J.N. Chapman, A.J. Craven (SUSSP, Edinburgh 1984) p. 149

    Google Scholar 

  • B.P. Luo, E. Zeitler: M-shell cross-sections for fast electron inelastic collisions based on photoabsorption data, J. Electron Spectrosc. Relat. Phenom. 57, 285 (1991)

    CAS  Google Scholar 

  • R.D. Leapman, P. Rez, D.F. Mayers: K, L, and M shell generalized oscillator strengths and ionization cross sections for fast electron collisions, J. Chem. Phys. 72, 1232 (1980)

    CAS  Google Scholar 

  • P. Rez: Cross-sections for energy loss spectrometry, Ultramicroscopy 9, 283 (1982)

    CAS  Google Scholar 

  • P.L. Potapov, K. Jorissen, D. Schryvers, D. Lamoen: Effect of charge transfer on EELS integrated cross sections in Mn and Ti oxides, Phys. Rev. B 70(4), 045106 (2004)

    Google Scholar 

  • R.F. Egerton, R.D. Leapman: Quantitative electron energy loss spectroscopy. In: Energy Filtering Transmission Electron Microscopy, ed. by L. Reimer (Springer, Heidelberg 1995) pp. 269–290

    Google Scholar 

  • R.F. Egerton: Oscillator-strength parameterization of inner-shell cross sections, Ultramicroscopy 50, 13 (1993)

    CAS  Google Scholar 

  • P. Schattschneider, W.S.M. Werner: Coherence in electron energy loss spectrometry, J. Electron Spectrosc. Relat. Phenom. 143, 81 (2005)

    CAS  Google Scholar 

  • P. Schattschneider, A. Exner: Progress in electron Compton scattering, Ultramicroscopy 59, 241 (1995)

    CAS  Google Scholar 

  • M. Inokuti: Inelastic collisions of fast charged particles with atoms and molecules—The Bethe theory revisited, Rev. Mod. Phys. 43, 297 (1971)

    CAS  Google Scholar 

  • M. Inokuti: Addenda: Inelastic collisions of fast charged particles with atoms ans molecules—The Bethe theory revisited, Rev. Mod. Phys. 50, 23 (1978)

    CAS  Google Scholar 

  • C.J. Powell: Cross section for ionization of inner shell electrons by electrons, Rev. Mod. Phys. 48, 33 (1976)

    CAS  Google Scholar 

  • J.I. Goldstein, D.B. Williams, G. Cliff: Quantitative x-ray analysis. In: Principles of Analytical Electron Microscopy, ed. by D.C. Joy, A.D.J. Romig, J.I. Goldstein (Plenum, New York 1986) p. 155

    Google Scholar 

  • F. Hofer: Inner shell ionization. In: Energy-Filtering Transmission Electron Microscopy, ed. by L. Reimer (Springer, Heidelberg 1995) p. 225

    Google Scholar 

  • N.J. Zaluzec: An electron energy loss spectral library, Ultramicroscopy 9(3), 319–323 (1982)

    CAS  Google Scholar 

  • B. Freitag, W. Mader: Element specific imaging with high lateral resolution: An experimental study on layer structures, J. Microsc. 194, 42 (1999)

    CAS  Google Scholar 

  • M.A. Kramers: XCIII. On the theory of x-ray absorption and the continuous x-ray spectrum, Philos. Mag. 46, 836 (1923)

    CAS  Google Scholar 

  • G.M. Reese, J.C.H. Spence, Y. Yamamoto: Coherent bremsstrahlung from kilovolt electrons in zone axis orientations, Philos. Mag. A 49, 697 (1984)

    CAS  Google Scholar 

  • J.C.H. Spence, G.M. Reese, Y. Yamamoto, G. Kurizki: Coherent bremsstrahlung peaks in x-ray microanalysis spectra, Philos. Mag. B 48, L39 (1983)

    CAS  Google Scholar 

  • G. Cliff, G.W. Lorimer: The quantitative analysis of thin specimens, J. Microsc. 103, 203 (1975)

    Google Scholar 

  • J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C.E. Fiori, E. Lifshin: Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Materials Scientists and Geologists (Plenum, New York 1981)

    Google Scholar 

  • P.M. Kelly, A. Jostson, R.G. Blake, J.G. Napier: The determination of foil thickness by scanning transmission electron microscopy, Phys. Status Solidi (a) 31(2), 771 (1975)

    CAS  Google Scholar 

  • R.W. Glitz, M.R. Notis, D.B. Williams: Considerations of x-ray absorption for STEM x-ray microanalysis of Ni-Al foils. In: Microbeam Analysis, ed. by R.H. Geiss (San Francisco, San Francisco 1981) pp. 309–312

    Google Scholar 

  • J. Philibert, R. Tixier: Electron probe microanalysis of transmission electron microscope specimens. In: Physical Aspects of Electron Microscop and Microbeam Analysis, ed. by D.R. Beaman, B.M. Siegel (Wiley, New York 1975) pp. 38–54

    Google Scholar 

  • C. Nockolds, M.J. Nasir, G. Cliff, G.W. Lorimer: X-ray fluorescence correction in thin foil analysis and direct methods for foil thickness measurement. In: Electron Microscopy and Analysis, Institute of Physics Conference Series, Vol. 52, ed. by T. Mulvey (Institute of Physics, Bristol 1979) pp. 417–420

    Google Scholar 

  • Z. Horita, T. Sano, M. Nemoto: Simplification of x-ray absorption correction in thin-sample quantitative microanalysis, Ultramicroscopy 21, 271 (1987)

    CAS  Google Scholar 

  • E. Van Cappellen: The parameterless correction method in x-ray microanalysis, Microsc. Microanal. Microstruct. 1, 1 (1990)

    Google Scholar 

  • O. Eibl: New method for absorption correction in high-accuracy, quantitative EDX microanalysis in the TEM including low-energy x-ray lines, Ultramicroscopy 50, 179 (1993)

    CAS  Google Scholar 

  • E. Van Cappellen, J.C. Doukhan: Quantitative transmission x-ray microanalysis of ionic compounds, Ultramicroscopy 53, 343 (1994)

    Google Scholar 

  • A.D. Westwood, J.R. Michael, M.R. Notis: Experimental determination of light-element k-factors using the extrapolation technique: Oxygen segregation in aluminium nitride, J. Microsc. 167, 287 (1992)

    CAS  Google Scholar 

  • M. Watanabe, D.B. Williams: The quantitative analysis of thin specimens: A review of progress from the Cliff–Lorimer to the new \(\zeta\)-factor methods, J. Microsc. 221(2), 89–109 (2006)

    CAS  Google Scholar 

  • J. Verbeeck, S. Van Aert: Model based quantification of EELS spectra, Ultramicroscopy 101, 207 (2004)

    CAS  Google Scholar 

  • R.D. Leapman, D.E. Newbury: Trace elemental analysis at nanometer spatial resolution by parallel detection electron energy loss spectroscopy, Anal. Chem. 65, 2409 (1993)

    CAS  Google Scholar 

  • H. Shuman, A.P. Somlyo: Electron energy loss analysis of near-trace-element concentrations of calcium, Ultramicroscopy 21, 23 (1987)

    CAS  Google Scholar 

  • N. Zaluzec: Digital filters for application to data analysis in electron energy-loss spectrometry, Ultramicroscopy 18, 185 (1985)

    CAS  Google Scholar 

  • T. Malis, J.M. Titchmarsh: A k-factor approach to EELS analysis. In: Electron Microscopy and Analysis, Institute of Physics Conference Series, (Institute of Physics, Bristol 1985) pp. 181–191

    Google Scholar 

  • S.C. Cheng, R.F. Egerton: Elemental analysis of thick amorphous specimens by EELS, Micron 24, 251 (1993)

    CAS  Google Scholar 

  • D.S. Su, H.F. Wang, E. Zeitler: The influence of plural scattering on EELS elemental analysis, Ultramicroscopy 59, 181 (1995)

    CAS  Google Scholar 

  • K. Wong, R.F. Egerton: Correction for the effects of elastic scattering in core-loss quantification, J. Microsc. 178, 198 (1995)

    CAS  Google Scholar 

  • N. Stenton, M.R. Notis, J.I. Goldstein, D.B. Williams: Determination of \(\phi (\rho t)\) curves for thin foil microanalysis. In: Quantitative Analysis with High Spatial Resolution, ed. by G.W. Lorimer, M.H. Jacobs, P. Doigt (The Metals Soc., London 1981) p. 35

    Google Scholar 

  • P. Rez: A transport equation theory of beam spreading in the electron microscope, Ultramicroscopy 12, 29 (1983)

    CAS  Google Scholar 

  • R.F. Loan, E.J. Kirkland, J. Silcox: Visibility of single heavy atoms on thin crystalline silicon in simulated annular dark-field STEM images, Acta Crystallogr. A 44, 912 (1988)

    Google Scholar 

  • P. Hovington, D. Drouin, R. Gauvin: Choosing the optimum accelerating voltage (EO) to visualize submicron precipitates with a field emission scanning electron microscope, Scanning 19, 438–447 (1997)

    CAS  Google Scholar 

  • R. Gauvin: Electron Beam Scattering Modeling. http://www.montecarlomodeling.mcgill.ca, (McGill University)

  • R.G. Faulkner, K. Norrgard: X-ray microanalytical sensitivity and spatial resolution in scanning transmission electron microscopes, X-Ray Spectrom. 7, 184 (1978)

    CAS  Google Scholar 

  • S.J.B. Reed, J.V.P. Long: X-ray optics and microanalysis. In: Proc. 4th Int. Cong. X-Ray Opt. Microanal., ed. by R. Castaing, R. Deschamps, J. Philibert (Hermann, Paris 1966) p. 339

    Google Scholar 

  • J.I. Goldstein, J.L. Costley, G.W. Lorimer, S.J.B. Reed: Quantitative x-ray analysis in the electron microscope. In: SEM/77, ed. by O. Johari (IITRI, Chicago 1977) pp. 315–324

    Google Scholar 

  • G. Cliff, G.W. Lorimer: Influence of plural electron scattering on x-ray spatial resolution in TEM thin foil microanalysis. In: Quantitative Microanalysis with High Spatial Resolution, ed. by G.W. Lorimer, M.H. Jacobs, P. Doigt (The Metals Soc, London 1981) p. 41

    Google Scholar 

  • V.J. Keast, D.B. Williams: Quantification of boundary segregation in the analytical electron microscope, J. Microsc. 199, 45 (2000)

    Google Scholar 

  • K. Nakata, O. Okada, Y. Ueki: Measurement of electron beam broadening in stainless steels during EDS analysis in the FEG-TEM, J. Electron Microsc. 50, 89 (2001)

    CAS  Google Scholar 

  • P. Doigt, P.E.J. Flewitt: The detection of monolayer grain boundary segregations in steels using STEM-EDS x-ray microanalysis, Met. Trans. A 13, 1397 (1982)

    Google Scholar 

  • V.J. Keast, D.B. Williams: Quantitative compositional mapping of Bi segregation to grain boundaries in Cu, Acta Mater. 47, 3999 (1999)

    CAS  Google Scholar 

  • V.J. Keast, J. Bruley, P. Rez, J.M. MacLaren, D.B. Williams: Chemistry and bonding changes associated with the segregation of Bi to grain boundaries in Cu, Acta Mater. 46, 481 (1998)

    CAS  Google Scholar 

  • M. Watanabe, D.B. Williams: X-ray analysis in the AEM with angstrom-level spatial resolution and single-atom, Microsc. Microanal. 11(Suppl. 2), 1362–2005 (2005)

    Google Scholar 

  • O.L. Krivanek, P.D. Nellist, N. Dellby, M.F. Murfitt, Z. Szilagyi: Towards sub-0.5 Å electron beams, Ultramicroscopy 96, 229 (2003)

    CAS  Google Scholar 

  • P.E. Batson, N. Dellby, O.L. Krivanek: Sub-ȧngstrom resolution using aberration corrected electron optics, Nature 418, 617 (2002)

    CAS  Google Scholar 

  • L.M. Brown: Electron energy loss spectroscopy in the electron microscope. In: Impact of Electron and Scanning Probe Microscopy on Materials Research, ed. by D.G. Rickerby, G. Valdré, U. Valdré (Kluwer Academic, London 1999) pp. 231–249

    Google Scholar 

  • S.J. Pennycook: High resolution electron microscopy and microanalysis, Contemp. Phys. 23, 371 (1982)

    CAS  Google Scholar 

  • S.J. Pennycook, D.E. Jesson, A.J. McGibbon, P.D. Nellist: High angle dark field STEM for advanced materials, J. Electron Microsc. 45, 36 (1996)

    CAS  Google Scholar 

  • D.A. Muller, J. Silcox: Delocalization in inelastic scattering, Ultramicroscopy 59, 195 (1995)

    CAS  Google Scholar 

  • H. Kohl, H. Rose: Theory of image foundation by inelastically scattered electrons in the electron microscope, Adv. Electron. Electron Phys. 65, 173–227 (1985)

    CAS  Google Scholar 

  • R.F. Egerton: Spatial resolution of nanostructural analysis by electron energy-loss spectroscopy and energy-filtered imaging, J. Electron Microsc. 48, 711 (1999)

    CAS  Google Scholar 

  • M.P. Oxley, E.C. Cosgriff, L.J. Allen: Nonlocality in imaging, Phys. Rev. Lett. 94, 203906 (2005)

    CAS  Google Scholar 

  • E.C. Cosgriff, M.P. Oxley, L.J. Allen, S.J. Pennycook: The spatial resolution of imaging using core-loss spectroscopy in the scanning transmission electron microscope, Ultramicroscopy 102, 317 (2005)

    CAS  Google Scholar 

  • C. Dwyer: Multislice theory of fast electron scattering incorporating atomic inner-shell ionization, Ultramicroscopy 104, 141 (2005)

    CAS  Google Scholar 

  • D.O. Klenov, J.M. Zide: Structure of the InAlAs/InP interface by atomically resolved energy dispersive spectroscopy, Appl. Phys. Lett. 99(14), 141904 (2011)

    Google Scholar 

  • J.C.H. Spence, J. Lynch: STEM microanalysis by transmission electron energy loss spectroscopy in crystals, Ultramicroscopy 9, 267 (1982)

    CAS  Google Scholar 

  • F. Hofer, W. Grogger, P. Warbichler, I. Papst: Quantitative energy-filtering transmission electron microscopy (EFTEM), Microchim. Acta 132(2–4), 273–288 (2000)

    CAS  Google Scholar 

  • D.B. Williams, M. Watanabe, A.J. Papworth, J.C. Li: Quantitative characterization of the composition, thickness and orientation of thin films in the analytical electron microscope, Thin Solid Films 424, 50 (2003)

    CAS  Google Scholar 

  • M. Watanabe, Z. Horita, M. Nemoto: Absorption correction and thickness determination using the $$\zeta$$ factor in quantitative x-ray microanalysis, Ultramicroscopy 65, 187 (1996)

    CAS  Google Scholar 

  • M. Watanabe, D.B. Williams: The new form of the \(\zeta\)-factor method for quantitative microanalysis in AEM-XEDS and its evaluation, Microsc. Microanal. 5, 88 (1999)

    Google Scholar 

  • P. Kotula, M.R. Kennan, J.R. Michael: Automated analysis of SEM x-ray spectral images: A powerful new microanalysis tool, Microsc. Microanal. 9, 1 (2003)

    CAS  Google Scholar 

  • P. Kotula, J.R. Michael, M.R. Kennan: Automated analysis of x-ray spectrum images from the STEM, Microsc. Microanal. 7, 198 (2001)

    Google Scholar 

  • J.M. Titchmarsh, S. Dumbill: Multivariate statistical analysis of FEG-STEM EDX spectra, J. Microsc. 184, 195 (1996)

    CAS  Google Scholar 

  • E.J.A. Chevalier, G.A. Botton: Application of multivariate statistical analysis to complex grain boundary microstructures. In: EMAG 99, Inst. Phys. Conf. Ser., Vol. 161, ed. by C.J. Kiely (Institute of Physics, Bristol 1999) pp. 175–178

    Google Scholar 

  • F. Hofer, P. Warbichler: Elemental mapping using energy filtered imaging. In: Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas, 2nd edn., ed. by C.C. Ahn (Wiley-VCH, Weinheim 2004) pp. 159–222

    Google Scholar 

  • J. Verbeeck, D. Van Dyck, G. Van Tandeloo: Energy-filtered transmission electron microscopy: An overview, Spectrochim. Acta B 59, 1529 (2004)

    Google Scholar 

  • O.L. Krivanek, D.N. Bui, D.A. Ray, C.B. Boothroyd, C.J. Humphreys: An imaging filter for a 100 kV dedicated STEM. In: Proc. 13th Int. Electron Microsc. Congr (Les Editions de Physique, Les Ulis, Paris 1994) p. 167

    Google Scholar 

  • J.-L. Lavergne, J.-M. Martin, M. Belin: Interactive electron energy-loss elemental mapping by the ‘‘imaging-spectrum'' method, Microsc. Microanal. Microstruct. 3, 517 (1992)

    Google Scholar 

  • J. Mayer, U. Eigenthaler, J.M. Plitzko, F. Dettenwanger: Quantitative analysis of electron spectroscopic imaging series, Micron 28, 361 (1997)

    Google Scholar 

  • P.J. Thomas, P.A. Midgley: Image spectroscopy: II. The removal of plural scattering from extended energy-filtered series by Fourier deconvolution, Ultramicroscopy 88, 187–194 (2001)

    CAS  Google Scholar 

  • P.J. Thomas, P.A. Midgley: Image-spectroscopy: I. The advantages of increased spectral information for compositional EFTEM analysis, Ultramicroscopy 88, 179–186 (2001)

    CAS  Google Scholar 

  • B. Schaffer, W. Grogger, G. Kothleithner: Automated spatial drift correction for EFTEM image series, Ultramicroscopy 102, 27 (2004)

    CAS  Google Scholar 

  • F. Hofer, B. Schaffer, W. Grogger, G. Kothleithner: New developments in energy-filtering transmission electron microscopy, Microsc. Microanal. 11(suppl. 2), 48 (2005)

    Google Scholar 

  • D.A. Muller, Y. Tzou, R. Raj, J. Silcox: Mapping sp2 and sp3 states of carbon at sub-nanometre spatial resolution, Nature 366, 725 (1993)

    CAS  Google Scholar 

  • G.A. Botton, M.W. Phaneuf: Imaging, spectroscopy and spectroscopic imaging with an energy filtered field emission TEM, Micron 30, 109 (1999)

    Google Scholar 

  • P. Bayle-Guillemaud, G. Radtke, M. Sennour: Electron spectroscopy imaging to study ELNES at a nanoscale, J. Microsc. 210, 66 (2003)

    CAS  Google Scholar 

  • A.P. Hitchcock, C. Morin, X.R. Zhang, T. Araki, J. Dynes, H. Stover, J. Brash, J.R. Lawrence, G.R. Leppard: Soft x-ray spectromicroscopy of biological and synthetic polymer systems, J. Electron Spectrosc. Relat. Phenom. 144, 259 (2005)

    Google Scholar 

  • C. Jeanguillaume, C. Colliex: Spectrum-image: The next step in EELS digital acquisition and processing, Ultramicroscopy 28, 252 (1989)

    Google Scholar 

  • J.A. Hunt, D.B. Williams: Electron energy-loss spectrum-imaging, Ultramicroscopy 38, 47 (1991)

    CAS  Google Scholar 

  • G.A. Botton, G. L'Espérance: Development, quantitative performance and applications of a parallel electron energy-loss spectrum imaging system, J. Microsc. 173, 9 (1994)

    CAS  Google Scholar 

  • C. Colliex, M. Tencé, C. Mory, H. Gu, D. Bouchet, C. Jeanguillaume: Electron energy loss spectrometry mapping, Microchim. Acta 114, 71 (1994)

    Google Scholar 

  • S.Q. Sun, S.L. Shi, J.A. Hunt, R.D. Leapman: Quantitative water mapping of cryosectioned cells by electron energy-loss spectroscopy, J. Microsc. 177, 18 (1995)

    CAS  Google Scholar 

  • J.A. Hunt, M.M. Disko, S.K. Behal, R.D. Leapman: Electron energy-loss chemical imaging of polymer phases, Ultramicroscopy 58, 55 (1995)

    CAS  Google Scholar 

  • W. Sigle, S. Kramer, V. Varshney, A. Zern, U. Eigenthaler, M. Rühle: Plasmon energy mapping in energy-filtering electron microscopy, Ultramicroscopy 96, 565 (2003)

    CAS  Google Scholar 

  • M. Boniface, L.J. Quazugue, J. Danet, D. Guyomard, P. Moreau, P. Bayle-Guillemaud: Nanoscale chemical evolution of silicon negative electrodes characterized by low-loss STEM-EELS, Nano Lett. 16(12), 7381–7388 (2016)

    CAS  Google Scholar 

  • A. Yurtserver, M. Weyland, D.A. Muller: Three-dimensional imaging of nonspherical silicon nanoparticles embedded in silicon oxide by plasmon tomography, Appl. Phys. Lett. 89, 151920 (2006)

    Google Scholar 

  • N. Bonnet, N. Brun, C. Colliex: Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis, Ultramicroscopy 77, 97 (1999)

    CAS  Google Scholar 

  • F. Hofer, W. Grogger, G. Kothleitner, P. Warbichler: Quantitative analysis of EFTEM elemental distribution images, Ultramicroscopy 67, 83 (1997)

    CAS  Google Scholar 

  • G. Kothleitner, F. Hofer: Elemental occurrence maps: A starting point for quantitative EELS spectrum image processing, Ultramicroscopy 96, 491 (2003)

    CAS  Google Scholar 

  • F. Hofer, P. Warbichler: Improved imaging of secondary phases in solids by energy-filtering TEM, Ultramicroscopy 63, 21 (1996)

    CAS  Google Scholar 

  • G.J.C. Carpenter: Plasmon-ratio imaging: A technique for enhancing the contrast of second phases with reduced diffraction contrast in TEM micrographs, Microsc. Microanal. 10, 435 (2004)

    CAS  Google Scholar 

  • G. Kothleitner, F. Hofer: Optimization of the signal to noise ratio in EFTEM elemental maps with regard to different ionization edge types, Micron 29, 349 (1998)

    CAS  Google Scholar 

  • W. Grogger, B. Schaffer, K.M. Krishnan, F. Hofer: Energy-filtering TEM at high magnification: Spatial resolution and detection limits, Ultramicroscopy 96, 481 (2003)

    CAS  Google Scholar 

  • A. Berger, H. Kohl: Elemental mapping using an imaging energy filter: Image formation and resolution limits, Microsc. Microanal. Microstruct. 3, 159 (1992)

    Google Scholar 

  • A. Berger, H. Kohl: Optimum imaging parameters for elemental mapping in an energy filtering transmission electron microscope, Optik 92, 175 (1993)

    Google Scholar 

  • A. Berger, J. Mayer, H. Kohl: Detection limits in elemental distribution images produced by energy filtering TEM case study of grain boundaries in Si3N4, Ultramicroscopy 55, 101 (1994)

    CAS  Google Scholar 

  • J. Scott, P.J. Thomas, M. MacKenzie, S. McFadzean, J. Wilbrink, A.J. Craven, W.A.P. Nicholson: Near-simultaneous dual energy range EELS spectrum imaging, Ultramicroscopy 108(12), 1586–1594 (2008)

    CAS  Google Scholar 

  • J. Angseryd, M. Albu, H. Andren, G. Kothleitner: A quantitative analysis of a multi-phase polycrystalline cubic boron nitride tool material using DualEELS, Micron 2011(42), 608–615 (2011)

    Google Scholar 

  • O.L. Krivanek, M.K. Kundmann, K. Kimoto: Spatial resolution in EFETM elemental maps, J. Microsc. 180, 277 (1995)

    CAS  Google Scholar 

  • W. Grogger, M. Varela, R. Ristau, B. Schaffer, F. Hofer, K.M. Krishnan: Energy-filtering transmission electron microscopy on the nanometer length scale, J. Electron Spectrosc. Relat. Phenom. 143, 139 (2005)

    CAS  Google Scholar 

  • Y. Zhu, M. Niewczas, M. Couillard, G.A. Botton: Single atomic layer detection of Ca and defect characterization of Bi-2212 with EELS and HA-ADF STEM, Ultramicroscopy 106, 1076 (2006)

    CAS  Google Scholar 

  • A. Rose: Quantum limitations to vision at low light levels, Image Technol. 12, 1315 (1970)

    Google Scholar 

  • T.O. Ziebold: Precision and sensitivity in electron microprobe analysis, Anal. Chem. 39, 858 (1967)

    CAS  Google Scholar 

  • R.F. Egerton, S.C. Cheng: Characterization of an analytical electron microscope with a NiO test specimen, Ultramicroscopy 55, 43 (1994)

    CAS  Google Scholar 

  • P. Trebbia: Unbiased method for signal estimation in electron energy loss spectroscopy, concentration measurements and detection limits in quantitative microanalysis: Methods and programs, Ultramicroscopy 24, 399 (1988)

    Google Scholar 

  • O.L. Krivanek, C. Mory, M. Tencé, C. Colliex: EELS quantification near the single-atom detection level, Microsc. Microanal. Microstruct. 2, 257 (1991)

    CAS  Google Scholar 

  • K. Suenaga, M. Tencé, C. Mory, C. Colliex, T. Okazaki, H. Shinohara, K. Hirahara, S. Bandow, S. Iijima: Element-selective single atom imaging, Science 290, 2280 (2000)

    CAS  Google Scholar 

  • R.D. Leapman, N.W. Rizzo: Towards single atom analysis of biological structures, Ultramicroscopy 78, 251 (1999)

    CAS  Google Scholar 

  • R.D. Leapman: Detecting single atoms of calcium and iron in biological structures by electron energy-loss spectrum-imaging, J. Microsc. 210, 5 (2003)

    CAS  Google Scholar 

  • D.E. Newbury: Trace element detection at nanometer scale spatial resolution, J. Electron Microsc. 47, 407 (1998)

    CAS  Google Scholar 

  • D.E. Newbury, D.A. Wollman, G.C. Hilton, K.D. Irwin, N.F. Bergren, D.A. Rudman, J.M. Martinis: The approaching revolution in x-ray microanalysis: The microcalorimeter energy dispersive spectrometer, J. Radioanal. Nucl. Chem. 244, 627 (2000)

    CAS  Google Scholar 

  • M.K.H. Natusch, C.J. Humphreys, N. Menon, O.L. Krivanek: Experimental and theoretical study of the detection limits in electron energy-loss spectroscopy, Micron 30, 173 (1999)

    CAS  Google Scholar 

  • N. Menon, O.L. Krivanek: Synthesis of electron energy loss spectra for the quantification of detection limits, Microsc. Microanal. 8, 203 (2002)

    Google Scholar 

  • L.A.J. Garvie, A.J. Craven, R. Brydson: Use of electron-energy loss near-edge fine structure in the study of minerals, Am. Mineral. 79, 411 (1994)

    CAS  Google Scholar 

  • J.G. Chen: NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds, Surface Sci. Rep. 30, 1 (1997)

    CAS  Google Scholar 

  • J.L. Mansot, P. Leone, P. Euzen, P. Pavaldeau: Valence of manganese in a new oxybromide compound, determined by means of electron energy-loss spectroscopy, Microsc. Microanal. Microstruct. 5, 79 (1994)

    CAS  Google Scholar 

  • G.A. Botton: EELS near edge structures. In: Impact of Electron and Scanning Probe Microscopy on Materials Research, ed. by D.G. Rickerby, G. Valdré, U. Valdré (Kluwer Academic, London 1999) p. 265

    Google Scholar 

  • G. Radtke, G.A. Botton: Electron energy loss near-edge structures. In: Scanning Transmission Electron Microscopy, ed. by S.J. Pennycook, P.D. Nellist (Springer, Berlin 2011) pp. 207–245

    Google Scholar 

  • V.J. Keast, A.J. Scott, R. Brydson, D.B. Williams, J. Bruley: Electron energy-loss near-edge structure—A tool for the investigation of electronic structure on the nanometre scale, J. Microsc. 203, 135 (2001)

    CAS  Google Scholar 

  • P.E. Batson: Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity, Nature 366, 727 (1993)

    CAS  Google Scholar 

  • D.A. Muller, T. Sorch, S. Moccio, F.H. Baumann, K. Evans-Luttertodt, G. Timp: The electronic structure at the atomic scale of ultrathin gate oxides, Nature 399, 758 (1999)

    CAS  Google Scholar 

  • D.A. Muller, N. Nakagawa, A. Ohtomo, J.L. Grazul, H.Y. Hwang: Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3, Nature 430, 657 (2004)

    CAS  Google Scholar 

  • M. Bugnet, S. Loffler, D. Hawthorn, H.A. Dabkowska, G.M. Luke, P. Schattschneider, G.A. Sawatzky, G. Radtke, G.A. Botton: Real-space localization and quantification of hole distribution in chain-ladder Sr3Ca11Cu24O41 superconductor, Sci. Adv. 2(3), e1501652 (2016)

    Google Scholar 

  • M. Bugnet, G. Radtke, S.Y. Woo, G.Z. Zhu, G.A. Botton: Temperature-dependent high energy-resolution EELS of ferroelectric and paraelectric BaTiO3 phases, Phys. Rev. B 93, 020102 (2016)

    Google Scholar 

  • M. Bugnet, G. Radtke, G.A. Botton: Oxygen 1s excitation and tetragonal distortion from core-hole effect in BaTiO3, Phys. Rev. B 88, 201107 (2013)

    Google Scholar 

  • G.Z. Zhu, G. Radtke, G.A. Botton: Bonding and structure of a reconstructed (001) surface of SrTiO3 from TEM, Nature 490(7420), 384–387 (2012)

    CAS  Google Scholar 

  • G.Z. Zhu, G.A. Botton: A ‘‘thickness series'': Weak signal extraction of ELNES in EELS spectra from surfaces, Microsc. Microanal. 20, 649–657 (2014)

    CAS  Google Scholar 

  • S. Löffler, M. Bugnet, N. Gauquelin, S. Lazar, E. Assmann, K. Held, G.A. Botton, P. Schattschneider: Real-space mapping of electronic orbitals, Ultramicroscopy 177, 26–29 (2017)

    Google Scholar 

  • A.T. Paxton: Theory of the near K-edge structure in electron energy loss spectroscopy, J. Electron Spectrosc. Relat. Phenom. 143, 51 (2005)

    CAS  Google Scholar 

  • P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz: Wien2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Inst. of Physical and Theoretical Chemistry, Vienna Univ. of Technology, Vienna 2001)

    Google Scholar 

  • J. Fink: Transmission electron energy-loss spectroscopy. In: Unoccupied Electronic States, ed. by J.C. Fuggle, J.E. Inglesfield (Springer, Berlin 1992) pp. 203–241

    Google Scholar 

  • D.D. Vvedensky: Theory of x-ray absorption fine structure. In: Unoccupied Electronic States, ed. by J.C. Fuggle, J.E. Inglesfield (Springer, Berlin 1992) p. 138

    Google Scholar 

  • D.K. Saldin: The theory of electron energy-loss near-edge structure, Philos. Mag. B 25, 515 (1987)

    Google Scholar 

  • P. Schattschneider, B. Jouffrey: Plasmons and related excitations. In: Energy Filtering Transmission Electron Microscopy, ed. by L. Reimer (Springer, Heidelberg 1995) pp. 151–224

    Google Scholar 

  • U. von Barth, G. Grossman: Dynamical effects in x-ray spectra and the final-state rule, Phys. Rev. B 25, 5150 (1982)

    Google Scholar 

  • C. Hebert: Practical aspects of running the WIEN2k code for electron spectroscopy, Micron 38, 12–28 (2007)

    CAS  Google Scholar 

  • G.A. Botton, G.Y. Guo, W.M. Temmerman, C.J. Humphreys: Electron energy loss spectroscopy as a tool to probe the electronic structure in intermetallic alloys. In: Properties of Complex Inorganic Solids, ed. by A. Gonis, A. Meike, P. Turchi (Plenum, New York 1997) pp. 175–180

    Google Scholar 

  • A.L. Ankudinov, B. Ravel, J.J. Rehr, S.D. Conradson: Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure, Phys. Rev. B 58, 7565 (1998)

    CAS  Google Scholar 

  • C.J. Pickard, M.C. Payne: Ab initio EELS beyond the fingerprint. In: Electron Microscopy and Analysis, Inst. Phys. Conf. Ser., Vol. 153 (Institute of Physics, Bristol 1997) pp. 179–182

    Google Scholar 

  • F.M.F. de Groot: X-ray absorption and dichroism of transition metals and their compounds, J. Electron Spectrosc. Relat. Phenom. 67, 529–622 (1994)

    Google Scholar 

  • F.M.F. de Groot: Multiplet effects in x-ray spectroscopy, Coord. Chem. Rev. 249, 31 (2005)

    Google Scholar 

  • P. Rez, J. Bruley, P. Brohan, M. Payne, L.A.J. Garvie: Review of methods for calculating near edge structure, Ultramicroscopy 59, 159 (1995)

    CAS  Google Scholar 

  • J. Fink: Recent developments in energy-loss spectroscopy, Adv. Electron. Electron Phys. 75, 121 (1989)

    CAS  Google Scholar 

  • G. Radtke, T. Epicier, P. Bayle-Guillemaud, J.C. Le Bosse: N-K ELNES study of anisotropy effects in hexagonal AlN, J. Microsc. 210, 60 (2003)

    CAS  Google Scholar 

  • G.A. Botton, C.B. Boothroyd, W.M. Stobbs: Momentum-dependent energy-loss near-edge structures using a CTEM—The reliability of the methods available, Ultramicroscopy 59, 93 (1995)

    CAS  Google Scholar 

  • B. Jouffrey, P. Schattschneider, C. Hebert: The magic angle: A solved mystery, Ultramicroscopy 102, 61 (2004)

    CAS  Google Scholar 

  • G.A. Botton: A new project to study bonding anisotropy with EELS, J. Electron Spectrosc. Relat. Phenom. 143(2/3), 129–137 (2005)

    CAS  Google Scholar 

  • G. Radtke, G.A. Botton, J. Verbeeck: Electron inelastic scattering and anisotropy: The two-dimensional point of view, Ultramicroscopy 106, 1082–1090 (2006)

    CAS  Google Scholar 

  • P. Ewels, T. Sikora, V. Serin, C.P. Ewels, L. Lajaunie: A complete overhaul of the electron energy-loss spectroscopy and x-ray absorption spectroscopy database: eelsdb.eu, Microsc. Microanal. 22, 717–724 (2016)

    CAS  Google Scholar 

  • D. Muller: WEELS—Websource for electron energy loss spectra. http://muller.research.engineering.cornell.edu/sites/WEELS/ (2019)

  • H. Raether: Excitations of Plasmons and Interband Transitions by Electrons (Springer, New York 1980)

    Google Scholar 

  • C. Colliex: Electron energy-loss spectroscopy in the electron microscope. In: Advances in Optical and Electron Microscopy, Vol. 9, ed. by V.E. Cosslett, R. Barer (Academic Press, London 1984) p. 65

    Google Scholar 

  • M.A. Turowski, T.F. Kelly: Profiling of the dielectric function across Al/SiO2/Si heterostructures with electron energy loss spectroscopy, Ultramicroscopy 41, 41 (1992)

    CAS  Google Scholar 

  • S. Schamm, G. Zanchi: Study of the dielectric properties near the band gap by VEELS: Gap measurement in bulk materials, Ultramicroscopy 96, 559 (2003)

    CAS  Google Scholar 

  • H. Müllejans, R.H. French: Insights into the electronic structure of ceramics through quantitative analysis of valence electron energy-loss spectroscopy, Microsc. Microanal. 6, 297 (2000)

    Google Scholar 

  • F. Wooten: Optical Properties of Solids (Academic Press, New York 1972)

    Google Scholar 

  • P. Moreau, M.C. Cheynet: Improved comparison of low energy loss spectra with band structure calculations: The example of BN filaments, Ultramicroscopy 94, 293 (2003)

    CAS  Google Scholar 

  • M. Launay, F. Boucher, P. Moreau: Evidence of a rutile-phase characteristic peak in low-energy loss spectra, Phys. Rev. B 69, 03101 (2004)

    Google Scholar 

  • V.J. Keast: Ab initio calculations of plasmons and interband transitions in the low-loss electron energy-loss spectrum, J. Electron Spectrosc. Relat. Phenom. 143, 97 (2005)

    CAS  Google Scholar 

  • G.A. Botton, G. L'Espérance, C.E. Gallerneault, M.D. Ball: Volume fraction measurement of dispersoids in a thin foil by parallel energy-loss spectroscopy: Development and assessment of the technique, J. Microsc. 180, 217 (1995)

    CAS  Google Scholar 

  • T. Malis, S.C. Cheng, R.F. Egerton: EELS log-ratio technique for specimen-thickness measurement in the TEM, J. Electron Microsc. Tech. 8, 193 (1988)

    CAS  Google Scholar 

  • Y.Y. Yang, R.F. Egerton: Tests of two alternative methods for measuring specimen thickness in a transmission electron microscope, Micron 26, 1 (1995)

    Google Scholar 

  • D.W. Johnson, J.C.H. Spence: Determination of the scattering probability distribution from plural scattering data, J. Phys. D 7(6), 771 (1974)

    Google Scholar 

  • R.F. Egerton, S.C. Cheng: Measurement of local thickness by electron energy-loss spectroscopy, Ultramicroscopy 21, 231 (1987)

    Google Scholar 

  • L. Gu, V. Srot, W. Sigle, C. Koch, P. van Aken, F. Scholz, S.B. Thapa, C. Kirchner, M. Jetter, M. Rühle: Band-gap measurements of direct and indirect semiconductors using monochromated electrons, Phys. Rev. B 75, 195214 (2007)

    Google Scholar 

  • M. Horák, M. Stöger-Pollach: The Čerenkov limit of Si, GaAs and GaP in electron energy loss spectrometry, Ultramicroscopy 157, 73–78 (2015)

    Google Scholar 

  • M. Stöger-Pollach, H. Franco, P. Schattschneider, B. Lazar, B. Schaffer, W. Grogger, H.W. Zandbergen: Cerenkov losses: A limit for bandgap determination and Kramers–Kronig analysis, Micron 37, 396–402 (2006)

    Google Scholar 

  • M. Stöger-Pollach: Low voltage TEM: Influences on electron energy loss spectrometry experiments, Micron 41, 577–584 (2010)

    Google Scholar 

  • M. Stöger-Pollach: Low voltage EELS—How low?, Ultramicroscopy 145, 98–104 (2014)

    Google Scholar 

  • J. Nelayah, M. Kociak, O. Stephan, F.J. Garcia de Abajo, M. Tence, L. Henrard, D. Taverna, I. Pastoriza-Santos, L.M. Liz-Marzan, C. Colliex: Mapping surface plasmons on a single metallic nanoparticle, Nat. Phys. 3, 348 (2007)

    CAS  Google Scholar 

  • M. Bosman, V.J. Keast, M. Watanabe, A.I. Maaroof, M.B. Cortie: Mapping surface plasmons at the nanometre scale with an electron beam, Nanotechnology 18, 165505 (2007)

    Google Scholar 

  • D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, G.A. Botton: Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe, Nano Lett. 11, 1499 (2011)

    CAS  Google Scholar 

  • D. Rossouw, G.A. Botton: Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding, Phys. Rev. Lett. 110, 066801 (2013)

    Google Scholar 

  • F.J. Garcia de Abajo, M. Kociak: Probing the photonic local density of states with electron energy loss spectroscopy, Phys. Rev. Lett. 100, 106804 (2008)

    CAS  Google Scholar 

  • F.J. Garcia de Abajo: Optical excitations in electron microscopy, Rev. Mod. Phys. 82, 209 (2010)

    CAS  Google Scholar 

  • E.P. Bellido, A. Manjavacas, Y. Zhang, Y. Cao, P. Nordlander, G.A. Botton: Electron energy-loss spectroscopy of multipolar edge and cavity modes in silver nanosquares, ACS Photonics 3, 428–433 (2016)

    CAS  Google Scholar 

  • E.P. Bellido, Y. Zhang, A. Manjavacas, P. Nordlander, G.A. Botton: Plasmonic coupling of multipolar edge modes and the formation of gap modes, ACS Photonics 4, 1558–1565 (2017)

    CAS  Google Scholar 

  • E.P. Bellido, G.D. Bernasconi, D. Rossouw, J. Butet, O.J.F. Martin, G.A. Botton: Self-similarity of plasmon edge modes on Koch fractal antennas, ACS Nano 11, 11240–11249 (2017)

    CAS  Google Scholar 

  • O.L. Krivanek, T.C. Lovejoy, N. Dellby, T. Aoki, R.W. Carpenter, P. Rez, R.F. Egerton: Vibrational spectroscopy in the electron microscope, Nature 514(7521), 209–212 (2014)

    CAS  Google Scholar 

  • M.J. Lagos, A. Trügler, U. Hohenester, E. Philip, P.E. Batson: Mapping vibrational surface and bulk modes in a single nanocube, Nature 543, 529 (2017)

    CAS  Google Scholar 

  • L.J. Allen, S.D. Findlay, A.R. Lupini, M.P. Oxley, S.J. Pennycook: Atomic-resolution electron energy loss spectroscopy imaging in aberration corrected scanning transmission electron microscopy, Phys. Rev. Lett. 91(10), 105503 (2003)

    CAS  Google Scholar 

  • A. Gloter, V. Badjeck, L. Bocher, N. Brun, K. March, M. Marinova, M. Tence, M. Walls, S.O. Zobelli, C. Colliex: Atomically resolved mapping of EELS fine structures, Mater. Sci. Semicond. Process. 65, 2–17 (2017)

    CAS  Google Scholar 

  • K. Suenaga, Y. Sato, Z. Liu, H. Kataura, T. Okazaki, K. Kimoto, H. Sawada, T. Sasaki, K. Omoto, T. Tomita, T. Kaneyama, Y. Kondo: Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage, Nat. Chem. 1(5), 415–418 (2009)

    CAS  Google Scholar 

  • O.L. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G.J. Corbin, N. Dellby, S.T. Pantelides: Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy, Nature 464(7288), 571–574 (2010)

    CAS  Google Scholar 

  • Y.C. Lin, P.Y. Teng, P.W. Chiu, K. Suenaga: Exploring the single atom spin state by electron spectroscopy, Phys. Rev. Lett. 115(20), 206803 (2015)

    Google Scholar 

  • N. Gauquelin, E. Benckiser, M.K. Kinyanjui, M. Wu, Y. Lu, G. Christiani, G. Logvenov, H.U. Habermeier, U. Kaiser, B. Keimer, G.A. Botton: Atomically resolved EELS mapping of the interfacial structure of epitaxially strained LaNiO3/LaAlO3 superlattices, Phys. Rev. B 90(19), 195140 (2014)

    Google Scholar 

  • N. Gauquelin, D.G. Hawthorn, G.A. Sawatzky, R.X. Liang, D.A. Bonn, W.N. Hardy, G.A. Botton: Atomic scale real-space mapping of holes in YBa2Cu3O\(_{6+\delta}\), Nat. Commun. 5, 4275 (2014)

    CAS  Google Scholar 

  • H.L. Xin, C. Dwyer, D.A. Muller: Is there a Stobbs factor in atomic-resolution STEM-EELS mapping?, Ultramicroscopy 139, 38–46 (2014)

    CAS  Google Scholar 

  • K. Suenaga, M. Koshino: Atom-by-atom spectroscopy at graphene edge, Nature 468(7327), 1088–1090 (2010)

    CAS  Google Scholar 

  • Q.M. Ramasse, C.R. Seabourne, D.M. Kepaptsoglou, R. Zan, U. Bangert, A.J. Scott: Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy, Nano Lett. 13(10), 4989–4995 (2013)

    CAS  Google Scholar 

  • T.C. Lovejoy, Q.M. Ramasse, M. Falke, A. Kaeppel, R. Terborg, R. Zan, O.L. Krivanek: Single atom identification by energy dispersive x-ray spectroscopy, Appl. Phys. Lett. 100(15), 154101 (2012)

    Google Scholar 

  • A.J. d'Alfonso, B. Freitag, D. Klenov, L.J. Allen: Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy, Phys. Rev. B 81(10), 100101 (2010)

    Google Scholar 

  • S.D. Findlay, M.P. Oxley, S.J. Pennycook, L.J. Allen: Modelling imaging based on core-loss spectroscopy in scanning transmission electron microscopy, Ultramicroscopy 104(2), 126–140 (2005)

    CAS  Google Scholar 

  • P. Longo, T. Topuria, P. Rice, A. Aitouchen, P.J. Thomas, R.D. Twesten: Simultaneous high-speed DualEELS and EDS acquisition at atomic level across the LaFeO3/SrTiO3 interface, Microsc. Microanal. 21(S3), 1857–1858 (2015)

    Google Scholar 

  • M. Bosman, M. Watanabe, D.T.L. Alexander, V.J. Keast: Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images, Ultramicroscopy 106(11), 1024–1032 (2006)

    CAS  Google Scholar 

  • M. Watanabe: Microscopy hacks: Development of various techniques to assist quantitative nanoanalysis and advanced electron microscopy, Microscopy 62(2), 217–241 (2013)

    CAS  Google Scholar 

  • M. Watanabe, E. Okunishi, K. Ishizuka: Analysis of spectrum-imaging datasets in atomic-resolution electron microscopy, Microsc. Anal. 23, 5 (2009)

    Google Scholar 

  • F. De La Peña, M.H. Berger, J.F. Hochepied, F. Dynys, O. Stephan, M. Walls: Mapping titanium and tin oxide phases using EELS: An application of independent component analysis, Ultramicroscopy 111(2), 169–176 (2011)

    Google Scholar 

  • D. Rossouw, R. Krakow, Z. Saghi, C.S. Yeoh, P. Burdet, R.K. Leary, P.A. Midgley: Blind source separation aided characterization of the $$\upgamma$$' strengthening phase in an advanced nickel-based superalloy by spectroscopic 4D electron microscopy, Acta Mater. 107, 229–238 (2016)

    CAS  Google Scholar 

  • D. Rossouw, B. Langelier, A. Scullion, M. Danaie, G.A. Botton: Multivariate-aided mapping of rare-earth partitioning in a wrought magnesium alloy, Scr. Mater. 124, 174–178 (2016)

    CAS  Google Scholar 

  • J.M. Thomas, R.K. Leary, A.S. Eggeman, P.A. Midgley: The rapidly changing face of electron microscopy, Chem. Phys. Lett. 631, 103–113 (2015)

    Google Scholar 

  • D. Rossouw, L.E. Chinchilla, S. Prabhudev, T. Trefz, N. Kremliakova, G.A. Botton: Machine-learning aided evolution studies of nano-composite electrodes and nano-particle catalysts for fuel cell applications, Microsc. Microanal. 21(suppl. 3), 1063–1065 (2015)

    Google Scholar 

  • P. Torruella, R. Arenal, F. de la Peña, Z. Saghi, L. Yedra, A. Eljarrat, L. López-Conesa, M. Estrader, A. López-Ortega, G. Salazar-Alvarez, J. Nogués, C. Ducati, P.A. Midgeley, F. Peiró, S. Estradé: 3D visualization of the iron oxidation state in FeO/Fe3O4 core–shell nanocubes from electron energy loss tomography, Nano Lett. 16(8), 5068–5073 (2016)

    CAS  Google Scholar 

  • D. Rossouw, P. Burdet, F. de la Peña, C. Ducati, B.R. Knappett, A.E. Wheatley, P.A. Midgley: Multicomponent signal unmixing from nanoheterostructures: Overcoming the traditional challenges of nanoscale x-ray analysis via machine learning, Nano Lett. 15(4), 2716–2720 (2015)

    CAS  Google Scholar 

  • J.M. Zuo: Electron detection characteristics of a slow-scan CCD camera, imaging plates and film, and electron image restoration, Microsc. Res. Tech. 49(3), 245–268 (2000)

    CAS  Google Scholar 

  • M.W. Tate, P. Purohit, D. Chamberlain, K.X. Nguyen, R. Hovden, C.S. Chang, D.A. Muller, D.C. Ralph: High dynamic range pixel array detector for scanning transmission electron microscopy, Microsc. Microanal. 22(1), 237–249 (2016)

    CAS  Google Scholar 

  • D.A. Muller, K.X. Nguyen, M.W. Tate, P. Purohit, C. Chang, M. Cao, S.M. Gruner: An electron microscope pixel array detector as a universal STEM detector, Microsc. Microanal. 22(S3), 478–479 (2016)

    Google Scholar 

  • A.R. Faruqi, D.M. Cattermole, R. Henderson, B. Mikulec, C. Raeburn: Evaluation of a hybrid pixel detector for electron microscopy, Ultramicroscopy 94(3), 263–276 (2003)

    CAS  Google Scholar 

  • D. McGrouther, M. Krajnak, I. MacLaren, D. Maneuski, V. O'Shea, P.D. Nellist: Use of a hybrid silicon pixel (Medipix) detector as a STEM detector, Microsc. Microanal. 21, 1595 (2015)

    Google Scholar 

  • A. Mac Raighne, G.V. Fernandez, D. Maneuski, D. McGrouther, V. O'Shea: Medipix2 as a highly flexible scanning/imaging detector for transmission electron microscopy, J. Instrum. 6(01), C01047 (2011)

    Google Scholar 

Download references

Acknowledgements

Gianluigi Botton is grateful for the patience and understanding of Peter Hawkes and John Spence who enabled him to do this work, particularly the first edition of this chapter despite on-going academic commitments, conference organization, and setting up of a new facility. GB is indebted to past members of his group for providing some figures and for feedback, in particular to N. Braidy, G. Radtke, M. Couillard, C. Maunders, Y. Zhu, G. Zhu, M. Bugnet, and S. Lazar. GB wants to thank several collaborators and friends who have provided, over the years, interesting samples, motivating discussions, and moralsupport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Botton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Botton, G., Prabhudev, S. (2019). Analytical Electron Microscopy. In: Hawkes, P.W., Spence, J.C.H. (eds) Springer Handbook of Microscopy. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-00069-1_7

Download citation

Publish with us

Policies and ethics